
 



 



 





What is Retro? 

According to the Oxford English Dictionary, the word retro 

refers to “imitative of a style, fashion, or design from the recent 

past”. It evokes nostalgia, a deliberate return to something that 

once was, whether in music, fashion, or technology. When we 

apply this idea to computing, retro computing isn’t just about 

using old machines - it’s about preserving and appreciating the 

evolution of technology, revisiting systems that once shaped the 

digital world, and our childhood. 

What Defines the Retro Computing Experience? 

A computer becomes “retro” when it is no longer mainstream but 

still holds historical or sentimental value. For the scope of the 

magazine and considering the hardware side of life, this range 

includes machines from the early 1980s to late 2000s - long 

before today’s sleek, cloud-connected, ultra-fast devices. Think 

of iconic systems like the Commodore 64, Apple II, or early 

IBM PCs. Legendary hardware such as 3Dfx Voodoo, and even 

GeForce 7800, and to just to be as relaxed as possible, from DOS 

via Windows 3.1 up to Windows 7, desktops with or without 

CRT monitors and mechanical keyboards also fit the category. 

But for the sake of our magazine, we will not differentiate 

among retro enthusiasts and won’t limit retro computing to just 

one definition. Are your best memories tied to a beloved retro 

gaming platform like the Sega Mega Drive (or Sega Genesis, for 

our American friends), an Amiga CD32, or a classic Nintendo 

console? No worries - you’re still welcome here. From time to 

time, you’ll find content tailored to your tastes as well. And why 



not share your own cherished memories? After all, that’s what 

we’re here for. 

Why it Still Matters 

For many of us, retro computing is more than just nostalgia. It’s 

a way to preserve digital history, tinker with hardware and 

software at a level that modern systems often carefully hide 

away from us, and even rediscover the simplicity and limitations 

that drove innovation in computing’s early days. 

Retro computing serves as both a bridge to the past and a hands-

on learning experience, preserving digital history while offering 

a deeper understanding of technology. Unlike modern systems 

that abstract away the hardware behind a complex layer of 

drivers, PnP and other magic present in newer operating systems, 

older computers require direct interaction, manual labour and 

those omnipresent jumpers, fostering a greater appreciation for 

how hardware and software function when finally it functions 

and these two sings in symphony. Revisiting these machines also 

provides valuable insight into the evolution of computing, 

highlighting the trade-offs between simplicity and convenience, 

control and automation, and ensuring that the innovations of the 

past remain accessible for future generations. 

Retro computing is more than just collecting old machines - it’s 

about experiencing computers in their purest form. Whether 

you’re restoring vintage hardware, running classic software 

through an emulator, or simply reminiscing about the days of 

floppy disks and command-line interfaces, retro computing 

offers a fascinating journey into the roots of modern technology. 



 

1 

 
  



 

2 

Retro-review: Prince of Persia 

(1989) 

Prince of Persia is a timeless classic and a 

personal favorite of the author of these lines, 

that laid the foundation for his fascination for 

cinematic platformers, while the game 

continues to be remembered for its innovative 

design, fluid animations, and gripping 

gameplay. Released in 1989 and developed by 

Jordan Mechner, this game pushed the 

technical limits of its time and set new 

standards for storytelling in video games. 

Gameplay 

At its core, Prince of Persia is a side-

scrolling action-adventure game that 

challenges players to navigate sparsely lit 

dungeons, decorated with torches, more or 

less alive skeletons, solve “push me to open 

the door” puzzles, and engage in sword 

combat against colorful guards on a strict diet, 

or not so, at least one of them.  

The goal is simple yet intense: rescue the 

princess within 60 in-game minutes. This time 

constraint adds a layer of urgency that 

amplifies the tension throughout the 

experience, to not to mention that beside 

watching the clock, we also have to fight all 

the guards, avoid all the spiky traps, drink till 

you get healthy again and last but not least, 

kill the evil Jaffar at the end. 

The game is notorious for its difficulty. The 

precise platforming mechanics require players 

to master timing and patience (fall to death in 

the current pit, or wait till the next), while the 

traps and enemies demand quick reflexes and 

a precise timing strategy that evolves over 

time. And nerves of steel, when trying to 

navigate the guillotines, which in some 

certain situation come in pairs of three.  

Despite its challenging nature, the game 

rarely feels unfair—its design encourages 

perseverance and rewards players for 

improving their skills, and as the author of 

these lines can confirm, it is definitely doable 

in the 60 minutes that you have to allocate 

from your busy daily schedule. 

 

Jumping on the IBM PC 

Animation and Graphics 

One of the most striking features of Prince of 

Persia is its groundbreaking animation 

(Please, don’t forget we are writing 1989!). 

Running on an Amstrad CPC 



 

3 

Mechner used rotoscoping, a technique that 

involves tracing over live-action footage, to 

create lifelike character movements. This 

level of realism was unprecedented in the late 

1980s and gave the prince's movements—

jumping, running, and fighting—a level of 

fluidity that still holds up today. 

Rotoscoping is an animation technique where 

artists trace over live-action footage, frame by 

frame, to create realistic movement in an 

animated medium. This process allows 

animators to capture the fluidity and natural 

motion of real-life subjects, giving the 

resulting animation a lifelike and dynamic 

quality. 

The environments, while simple by modern 

standards (even when run on a GeForce 5090 

with its hefty price tag), effectively evoke the 

atmosphere of a mystical Persian dungeon of 

an evil wizard, or the Far-East Castle of a 

good and beloved Sultan, whose daughter was 

sadly kidnapped by the aforementioned Grand 

Vizier.  

However, we have some complaints 

concerning the safety of the caste, it seems the 

architect had forgot to put in some proper 

timbers, since walking on the floor sometimes 

can represent quite a danger. The dimly lit 

corridors, eerie traps, and minimalist aesthetic 

immerse players in the game's world, 

especially when falling down is as realistic as 

you would expect in real life. 

Sound and Music 

The sound design complements the game's 

atmosphere, even for those players who could 

afford only the beeps of a PC Speaker. From 

the clang of swords during combat to the 

ominous creak of a falling tile, every sound 

enhances the tension and immersion. While 

the game lacks a continuous soundtrack, the 

sparse use of music during critical moments 

(such as near-death experiences or encounters 

with the villain Jaffar) adds emotional weight 

to the experience. 

Legacy 

Not mentioning the fan made remake, 4D 

Prince of Persia which brings the difficulty to 

another levels, the game was ported to almost 

all platforms possible, some have graphics 

identical to the PC version (which came out in 

1990, and boasted the full 256 color palette of 

the IBM PC, up from the 16, of the original 

version on Apple II) while some platforms 

have more fancier graphics. Almost all the 

platforms have identical level constructs to 

the original one, except a few ones, such as 

ports targeting consoles like SNES and Xbox. 

For your delight we have included several 

screenshots of the program from various 

classic platforms in this article, and at the end 

of all, we will also add several online sources 

where you still can enjoy this favorite of ages. 

 

The first fight on a TurboGrafx-CD 

Acquiring the Sword on a Sharp X68000 



 

4 

Prince of Persia 2, The Shadow ad the Flame 

is a direct descendant of the game with more 

traps, more tricks, better graphics and the 

wardrobe of the prince also suffered a decent 

upgrade, just like we can see on ports that 

have followed the original PC release. An 

extra bonus to this sequel is the cliffhanger 

which is explained on Jordan Mechner’s site: 

https://www.jordanmechner.com/en/latest-

news/#cliffhanger . 

The way we look back and reflect, it’s better 

that we don’t mention Prince of Persia 3D, 

however Prince of Persia: The Sands of Time 

and following episodes have actually updated 

the game up to be of a pretty decent quality, 

an as announced by Ubisoft, "The Sands of 

Time Remake" is an upcoming project that 

revisits the classic 2003 title. Initially slated 

for release in 2021, the project faced multiple 

delays to ensure quality improvements. As of 

now, the remake is scheduled for release in 

2026, aiming to bring the beloved story and 

gameplay to a new generation with enhanced 

graphics and modernized mechanics. 

Surprisingly good were the more recent 

releases of the game, such as Prince of Persia: 

The Lost Crown (2024) or The Rogue Prince 

of Persia (2024), but I think hardcore retro 

fans are waiting more of a remake of the 

classic ones, like The Shadow and Flame. Till 

this happens, feel free to play one of the many 

ports of the original game, we really can 

recommend the one that came out for Xbox 

360 and PlayStation 3 a while ago: Prince of 

Persia Classic. 

 

The SNES has also expanded levels. 

Conclusion 

Prince of Persia (1989) is more than just a 

game—it’s a piece of video game history. Its 

innovative design, realistic for the time of 

release animation, and captivating gameplay 

make it a must-play for fans of retro games 

and platformers alike. Though it may test 

your patience, the sense of accomplishment 

from completing it is unparalleled. 

Rating: 10/10 

Verdict: A groundbreaking classic that 

remains a treasure for gamers even in 2025.

• 

• 

The graphics are beautiful on a Sega Genesis 

https://www.jordanmechner.com/en/latest-news/#cliffhanger
https://www.jordanmechner.com/en/latest-news/#cliffhanger
https://www.retrogames.cz/play_102-DOS.php
https://playclassic.games/games/platform-dos-games-online/play-prince-of-persia-online/


 

5 

 



Show us 
your rig: 
The Compaq 
LTE 
5250

  



 
 

 

Ah, the Compaq LTE 5250 - a 
sweet little laptop from a time 
when “portable” meant “you can 
carry it, but you’ll definitely regret 
it.” Released in 1996, this bad boy 
was the dream machine for 
business professionals who 
wanted to look tech-savvy while 
lugging around what was 
essentially a high-tech cinder 
block. 

 

Like all other laptops from those 
times, the LTE 5250 is also built 
like a lightweight tank, which 
means two things: 

- Probably It could survive a 
nuclear apocalypse if stayed far 
enough from ground zero. 

- It definitely can survive 20 years 
locked in the mouldy basement of 
the headquarters of and old 
defunct company from where I 
have rescued mine. 

At 7 pounds (3.2 kg) without the 
hefty docking station, this thing 
wasn’t just a laptop—it was a 
statement. A statement that said, 
“I don’t care about my shoulders.” 
The hinges? Rock solid. The 
chassis? A sturdy plastic 
masterpiece, which sadly shows 

signs of degradation over the last 
40 years, like all old retro plastic 
does. The only thing missing was a 
built-in handle for easier 
transportation (or a warning label 
for back injuries). 

The 10.4-inch screen comes in 
800x600 resolution which was 
good enough for Windows 95, but 
let’s be real, realistically it’s about 
as crisp as an old VHS tape left in 
the sun. And sadly, this specific 
model does not accept the famous 
Fn+T key combination to stretch 
the screen to its full potential, 
thus leaving wonderful games like 
Heretic hanging in the middle of it.  

Let’s be real - this machine 
wrestles with Duke Nukem like it 
owes it money. Not because of 
the 120MHz Pentium - that little 
champ is actually pretty decent at 
mowing down aliens and securing 
pixelated babes - but thanks to 
the Cirrus graphics card, which 
apparently missed the memo on 
fast action games. Oddly enough, 
it breezes through Heroes of 
Might and Magic 2, probably 
because the 32MB of RAM lets it 
hoard monster sprites like a 

medieval dragon sitting on its 
treasure. 

The LTE 5250 is a time capsule of 
computing greatness—or 
frustration, depending on how 
nostalgic you feel about Windows 
95’s tendency to randomly throw 
blue screens at you. Mine came 
with Windows 95 pre-installed, 
meaning it has that classic startup 
chime that instantly teleports you 
to an era of beige computers and 
dial-up tones. 

And while it may struggle with 
fast-paced FPS games, it’s 
practically a command centre for 
classic productivity. Need to write 
a business proposal in Word 97? 
No problem! Want to browse the 
web? Nope… even if you enjoy 
waiting five minutes for a single 
page to load, and if you can find a 
browser that even works today 
paired up with a dial-up 
connection, we simply do not 
recommend getting online on a 
machine like this. Of course, 
running Oregon Trail or SimCity 
2000 feels right at home - because 
let's be honest, the real reason 



anyone keeps these old machines 
around is to relive their gaming 
glory days, maybe by connecting 
two identical machines with a 
null-modem cable and play Doom, 
like it’s 1995. 

From the hardware point of view, 
there is a floppy drive 
exchangeable with a CD drive in 
the same slot, sadly due to this, 
only one of them can be used at 
the same time. The sound card is 
Sound Blaster compatible, so 
making beeps and bloops should 
not be a problem. 

The keyboard? Surprisingly good. 
The keys have nice travel, making 
it feel like you’re actually doing 
something important when typing. 
I might say, that this was the best 
keyboard I have ever experienced 
on a laptop, for me it is even 

beating those fancy IBM 
Thinkpads from the same age and 
time.  

But the pointing device? Oh boy. 
It’s one of those early trackpoint 
nubs, meaning you’ll spend more 
time fighting your own cursor than 
getting work done. It’s a great way 
to relive the frustration of early 
computing, like playing a video 
game where the boss fight is just 
your own patience. The hard drive 
is an absolute time machine in 
itself - mine came with a 
whopping 2GB drive, which in 
1996 was considered excessive. 
"You'll never need more than 
that," they said. "What would you 
even fill it with?" they asked. Of 
course, in true 90s fashion, it 
sounds like a miniature jet engine 
when it spins up, reminding you 
that back then, performance came 

with a soundtrack. If the original 
drive ever fails (which it probably 
will), swapping it for a 
CompactFlash-to-IDE adapter is a 
great way to future-proof this old 
beast - because nothing screams 
“retro-futuristic” like booting 
Windows 95 from a 32GB CF card. 

The LTE 5250’s docking station is 
absurd. If the laptop itself is a 
cinder block, the dock is a full-on 
concrete slab. Weighing nearly as 
much as the laptop itself, it turns 
this “portable” machine into a full 
desktop replacement - because 
back then, mobility meant 
“carrying this thing between two 
desks”. But on the positive side, it 
gives a plethora of expansion 
possibilities, such as an extra ISA 
slot, extra hard-drive, a second 
battery pack.

Like all old machines from those 
times, this specific machine is also 
not resistant to battery exhaustion, 
Thankfully, some brave souls on 
the internet still rebuild batteries 
(https://www.ebay.com/usr/8048
6sx) for these ancient machines, 
meaning you can actually run it 
without being tethered to a power 
outlet - though at this point, the 
charger is basically part of the 

aesthetic. If you’re really feeling 
adventurous, you can even 3D-
print replacement parts for the 
cracking plastics, ensuring that 
this 90s legend lives to fight 
another day. 

Surprisingly this ancient machine 
has a growing fan club, even a 
private Facebook group exists for 
fans and owners of Compaq LTE 

and Armada owners, proving that 
everything has a place on this 
planet. The more than 300 page 
long manual, found online at 
https://archive.org/details/manua
lsbase-id-
247638/mode/2up?view=theater 
has surprising amount of details, 
even down to the hardware level, 
on how to physically hack the 
machine together with details that 

https://www.ebay.com/usr/80486sx
https://www.ebay.com/usr/80486sx
https://archive.org/details/manualsbase-id-247638/mode/2up?view=theater
https://archive.org/details/manualsbase-id-247638/mode/2up?view=theater
https://archive.org/details/manualsbase-id-247638/mode/2up?view=theater


we simply miss in the manuals of 
modern machines. Oh, you’re 
right... what kind of manuals do 
even come with modern machines? 

So, there you have it - the Compaq 
LTE 5250: part laptop, part 
museum exhibit, all nostalgia. 
Would I use it as a daily driver? 

Absolutely not. But would I fire it 
up to play Heroes of Might and 
Magic II while pretending it’s still 
1997? You bet.

 

The Right side of the backside 

 

The Other Right side of the backside 

 

One side of the sides of the computer 

 

The other side 

 

Original Review from December '96 

 

Can 

 

Can 

 

 

Cannot 

 

 



 

 

 

 

Broken 

Sword: Thee 

Templars 



Broken 

Sword – The 

Shadow of 

the 

Templars 
The year is 1996, and George Stobbart, the quintessential American tourist 

with an inexhaustible supply of frequent flyer miles and a pocket deeper than 

the average pair of ladies’ trousers, had been all set to savour his first meal in 

the City of Lights. That was, of course, until a pesky clown rather rudely 

interrupted his plans - by blowing up the very café where he had been hoping 

to enjoy a quiet moment, and a morning croissant with hot black coffee. 

Suddenly, breakfast was off the menu, replaced instead by an adventure far 

more explosive than he could have ever anticipated.  



This is how Broken Sword: The 

Shadow of the Templars, a rather 

splendid point-and-click adventure 

game starts. First unleashed upon 

the world in 1996 by the ever-

talented Revolution Software the 

game is a masterclass in mystery, 

historical intrigue, and the fine art 

of getting caught up in other 

people’s problems, while following 

George Stobbart, 

who has an 

unfortunate knack 

for being in the 

wrong place at the 

wrong time. 

What follows the 

quite unpleasant 

incident at the cafe, 

is an utterly 

delightful romp 

through an 

elaborate 

conspiracy 

involving the 

Knights Templar, shadowy figures 

with questionable motives, and an 

unhealthy number of locked doors 

requiring obscure keys.  

Fortunately, George is not alone in is 

endeavours. Enter Nicole Collard - 

journalist, sharp-witted Parisian, 

and the one person in this tale who 

seems to know what she’s doing, 

unlike the two exquisite members of 

the Parisian police force: Inspector 

Rosso, a self-styled psychological 

detective with a penchant for 

abstract theories over actual 

evidence, and Sergeant Moue, his 

bumbling, sweat-drenched 

subordinate whose chief skills 

include blocking doorways and 

looking bewildered, form a 

delightfully 

incompetent duo 

who, through a mix 

of misplaced 

confidence and 

sheer inefficiency, 

manage to turn law 

enforcement into 

something of an art 

form - much to the 

benefit of any 

would-be 

conspirators and, 

indeed, our hapless 

hero. 

Visually, Broken Sword is a hand-

drawn delight, capturing the 

romance of Paris, the mystery of 

forgotten ruins, and the unrelenting 

danger of standing too close to 

suspicious individuals. Its script is 

razor-sharp, brimming with charm, 

humour, and the sort of dialogue 

that makes you wish real



conversations were half as entertaining. 

The puzzles? Ingeniously crafted exercises 

over several locations, in lateral thinking or, 

if you prefer, wildly - clicking on everything 

until something happens across the entire 

Globe. 

Solving these, our friend, George, embarks 

on a globe-trotting adventure, visiting a 

variety of locations steeped in history, 

mystery, and the occasional life-threatening 

peril. 

In short, Broken Sword is a true gem of the 

adventure game genre—an effortlessly 

charming, wonderfully atmospheric tale of 

intrigue, history, and highly suspect clowns. 

If you’ve yet to experience its delights, do 

yourself a favour and rectify that 

immediately. 

While Broken Sword: The Shadow of the 

Templars is rightly celebrated as a classic of 

the point-and-click adventure genre, it is 

not entirely without its quirks—some of 

which manifest as rather amusing (or 

infuriating) bugs. 

One of the most infamous occurs in the 

original PC version, where some cutscenes 

occasionally fail to trigger if you visited 

certain locations before the ones the 

developers thought that are more logical, 

thus leaving poor George standing around 

awkwardly, utterly oblivious to the grand 

conspiracy unfolding around him. 

 

George’s Travel-Itinerary 

Paris, France - The adventure begins 

in the City of Light, where George 

witnesses the infamous café 

bombing. From the bustling canals 

to the shadowy halls of a museum 

and a seedy hotel, home to a British 

Primadonna, Paris serves as the 

central hub for much of his 

investigation. 

Ireland (Lochmarne) - George’s 

travels lead him to a quiet Irish 

village, complete with a cosy pub, a 

suspiciously chatty farmer, and the 

ruins of an ancient castle hiding a 

very moody goat. 

Syria (Marib) - In search of further 

clues, George journeys to a sun-

soaked Middle Eastern town, in a 

country which has not felt the 

devastation of civil war yet, 

navigating a vibrant marketplace, 

evading his nemesis, and engaging 

in some questionable treasure 

hunting. 

Spain (Villa de Vasconcellos) - The 

trail takes him to a remote Spanish 

villa, where a reclusive nobleman 

with a penchant for Templar history 

offers yet another piece of the 

puzzle. 

Scotland (Bannockburn) - The final 

leg of George’s journey brings him to 

an ancient Scottish site linked to the 

… (no more spoilers, please). 

 



The making of the remake 

The game was highly praised in its 

days, thus a remake was something 

that everyone who ever fell in love 

with the original has eagerly waited, 

so enter the scene: Broken Sword: 

The Shadow of 

the Templars, 

Reforged. 

So, right, let's 

have a proper 

look at this 

"Reforged" 

version of 

"Broken Sword," 

shall we? It's 

quite the thing, really. They've 

certainly given it a good polish. 

Visually, it's a marked improvement. 

The higher resolution that comes 

automatically with modern game 

releases brings out the detail in the 

backgrounds and characters, making 

it far more 

pleasing to the 

eye.  

One can really 

appreciate the 

artistry and the 

incredible amount 

of work that went 

into the original 

designs, now that 

they're displayed with such clarity, 

thanks to the re-forged graphics, 

background and characters.  



 

The old 

 

The new 

 

 

While these images don’t provide a visual advantage to either one, simply 

zoom in a bit - since this is a PDF, the differences will become instantly 

apparent. 

The animations are smoother, too, which makes the whole experience feel 

more modern, but here we are not that sure whether this is due to the fact 

that it is run on computers hundred times faster than those in 1996, or well... 

just. 

 

The author finds the old menu more player friendly 



Reforged begins with a clear breakdown of how point-and-click games function 

when starting a new adventure. It offers two gameplay modes: Classic Mode 

and Story Mode, the latter designed to make the experience more accessible 

for newcomers. While I played primarily in Classic Mode, briefly exploring Story 

Mode to assess its effectiveness, it serves as a groundbreaking way to 

introduce younger and less experienced players to the point-and-click genre, 

because let’s be honest: we were sort of deprived of a high-quality item from 

those in recent years.  

The Reforged version also made quite an effort to streamline the user 

interface, which is a welcome change for some. It's more intuitive, and one 

doesn't find oneself fumbling about quite as much. 

And the inclusion of a hint system, whilst perhaps a little hand-holding for the 

purists, is a sensible addition, but to be very honest, I preferred the older style 

UI where the menu was located on the top of the screen. Not that there is 

anything wrong with the new one, but it’s not that much my cup of tea... or 

pint’o beer. 

 

It’s important to note that the game designers have opted to stick with the 

original 1996 version, meaning that the "Director's Cut" additions, 



including the Nico sections, are not included. This choice was made to preserve 

the authentic experience, a decision that was well-received by most fans of the 

game. Additionally, the developers have addressed the most frustrating bugs 

that, at times, could escalate the level of frustration to such an extent that 

players were forced to reload an earlier save and take a different route just to 

successfully complete the quest. 

In essence, Reforged is a respectful and thoughtfully crafted update that pays 

homage to the original while refining it for a modern audience. It preserves the 

core gameplay mechanics, rich narrative, and nostalgic charm that made the 

original so cherished, ensuring that long-time fans still feel right at home. At 

the same time, it introduces visual enhancements, polished mechanics, and 

quality-of-life improvements that bring it in line with contemporary gaming 

expectations. By striking this delicate 

balance, Reforged serves as a fine example of 

how to revitalise a classic without 

compromising its essence or alienating its 

devoted fanbase. 

We 
App

rove



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Retro Coder: Gentle Introduction to C 
In an age of cutting-edge technology and ever-evolving programming languages, we, a unique group of 

enthusiasts choose to step back in time. We are known as “Retro Coders”. We dedicate our spare time after 

walking the dog, feeding the kids and tending to dirty dishes, to writing code for vintage computers, not 

out of necessity, but for the sheer joy of reviving the past. Whether it's crafting new games for the 

Commodore 64, optimizing assembly routines for an IBM PC, or breathing new life into an Amiga, we 

embrace the constraints and quirks of outdated hardware as a creative challenge. 

Retro coding is more than just nostalgia; it's an art form that blends technical ingenuity with historical 

appreciation. By working within the limitations of classic machines, Retro Coders push the boundaries of 

what was once thought possible. Some of us create entirely new software, while others work to preserve, 

document, and enhance old programs, ensuring that the legacy of early computing continues to thrive.  

The current embodiment of this series of the magazine will be an ever-evolving tutorial focusing on 

programming the IBM-PC (but not only) by providing insight on how to get what you want out from your 



 
 

ages old real-time environment by presenting techniques that were considered advanced 30 years ago, and 

downright extinct today. 

To have a twist because certainly, without one nothing would work, we will be using modern technology 

and tools because to be honest, code editors and programming IDE’s have evolved a lot during the last 

decades, and it would be border-line masochism to not to use them (on the other end, if you are vi master, 

feel free to use that, we don’t mind). This article, sort of expects our readers to have an understanding of 

the generic programming notions, but not necessarily C nor C++, so we provide a quick introduction to the 

C programming language.  

Since at this stage there is no homepage on the almighty internet dedicated to the home of RetroWTF, all 

the code will be placed in the pages of this edition, so please feel at home in the nineties, where you had to 

manually copy the code out from your magazine of choice. Strange, how times have a tendency to repeat 

themselves. 

The Foundations of C Programming 
C is a powerful and widely used programming language that forms the basis for many other languages, 

including C++, Java, and Python. It is extensively employed in system programming, embedded systems, 

and applications where performance is critical. Understanding C provides a strong foundation for learning 

other programming languages and understanding how computers work at a fundamental level. 

For our readers who are not versed in the dark art of programming, we are providing a quick introduction 

to the C programming language, since we consider it to be the ideal candidate to write programs for our 

favorite retro platform, the IBM PC. 

Our readers, who know how to conjure up lines of code without having to read through the introductory 

part of this article feel free to skip to the end of it, where we will jump deep, and conjure up some real dark 

lines of DOS covering direct screen access, and other mystical topics. Also, don’t be afraid to read up on 

how to compile classical DOS program on modern systems. 

What is Programming? 

At its core, programming is about giving instructions to a computer. Think of it like writing a recipe, but for a 

machine. A "program" is a sequence of these instructions. Since C is a "compiled" language, meaning your 

code (source code) needs to be translated into machine-understandable code (executable) before it can 

run. We call this translation: compiling. 

Writing a program 

Before we can make a program, we actually need to write it, so we use either Text Editors or a full-fledged 

IDE. 

Text Editors 

These are the simple but effective tools for writing code, such as Notepad++ (Windows), Sublime Text 

(cross-platform), VS Code (cross-platform), and Atom (cross-platform). 

Their usage almost always requires using the command line to compile and run programs. 



 
 

Integrated Development Environments (IDEs) 

These tools provide a comprehensive environment for software development, including a text editor, 

compiler, debugger, and build tools. 

Examples include Code::Blocks, Dev-C++ (Windows), Visual Studio (Windows), and Xcode (macOS). 

IDEs streamline the development process, especially for larger projects, and allow you to escape the 

mayhem of command line if you are afraid of them. 

VS Code 

For our retrobright purpose we will use Visual Studio Code, which can be looked at as either a very 

advanced text editor or a very simple but flexible and extensible IDE. Getting it on your computer is easy, 

just follow the instructions here: there is nothing simpler than installing Visual Studio Code: just head over 

to https://code.visualstudio.com/download and press the download button for your platform. I chose the 

easier way, picked the Windows one, since I am writing this article on Windows.  

 

Once it installed itself make sure to pick the C/C++ extension which will allow you to edit C/C++ code and 

you can move on to the next step: installing a compiler. 

The Compilers 

Now, on the other end, before we can run a C program, we need to compile it. A compiler is just another 

program that takes the source code you wrote and transforms it into the language the CPU of the computer 

can understand and execute. 

There are several Compiler we can choose from: 

• GCC (GNU Compiler Collection): A highly popular and versatile compiler available for various 

operating systems. 

• Clang: Another widely used compiler, particularly common on macOS and often used for its helpful 

error messages. 

• Microsoft Visual C++ (MSVC): The compiler provided by Microsoft as part of Visual Studio, primarily 

used on Windows. 

For our specific purpose of writing retro programs we will use OpenWatcom, the once best compiler for 

DOS platforms (Remember, RETRO programming). 

https://code.visualstudio.com/download


 
 

Our compiler of choice: OpenWatcom 

OpenWatcom is an open-source compiler suite derived from the Watcom C, C++, and Fortran compilers, 

supporting DOS, Windows (16-bit and 32-bit), OS/2, and some embedded platforms. It features cross-

compilation, DOS extender support, and a built-in debugger, making it useful for maintaining legacy 

software and retro development. While it was once popular for game and system programming, modern 

developers typically prefer GCC, Clang, or MSVC for contemporary projects. 

Installing it is as easy as downloading from https://openwatcom.org/ftp/install/ the latest official version 

(1.9) and running the installer. This should take care of all the default settings, so after this point you should 

be able to use the compiler as it is supposed to be used. 

 

In case you feel adventurous and want to give a test ride to the bleeding edge, the latest snapshot can be 

obtained from https://github.com/open-watcom/open-watcom-v2/releases and in order to extract it, we’ll 

need 7zip on our machine: https://www.7-zip.org/. 

Once you have extracted to a specific folder (you 

might need to make beforehand) add the folder 

binnt64 to your path: Can be found at: System 

Properties → Environment Variables and create a 

new environment variable, called WATCOM, just as 

the screenshot shows you. 
 

Please note, these setting are system dependent, so if you are not on a 64-bit platform, please do not add 

the 64 bit directory, just the plain binnt one. 

https://openwatcom.org/ftp/install/
https://github.com/open-watcom/open-watcom-v2/releases
https://www.7-zip.org/


 
 

Pairing VS Code with OpenWatcom 

It might be a bit cumbersome to get VSCode to fully cooperate with OpenWatcom, so to put it blandly and 

make this transition easy for everyone, let’s just make it like this: 

1. Create a main.c file in the directory you want to work on your retro code projects 

2. Create a directory .vscode in that directory 

3. Put the following tasks.json file in the .vscode directory after you have changed the two values of 

c:/Users/fritz/work/owatcom  to the directory where you have installed your OpenWatcom 

(unless you are called fritz). 

{ 

    "version": "2.0.0", 

    "tasks": [ 

        { 

            "label": "Build Using Watcom C++", 

            "type": "shell", 

            "command": "c:/Users/fritz/work/owatcom/binnt/wpp.exe ${file} -i=c:/Users/fritz/work/owatcom/h -oa -os -s 

-xs -ml -fo=${workspaceFolder}/${fileBasenameNoExtension}.obj", 

            "args": [], 

            "problemMatcher": [], 

            "group": { 

                "kind": "build", 

                "isDefault": true 

            } 

        }, 

        { 

            "label": "Link Using Watcom C++", 

            "type": "shell", 

            "command": "wlink.exe system dos option map option eliminate option stack=4096 name 

${workspaceFolder}/${fileBasenameNoExtension}.exe file ${workspaceFolder}/${fileBasenameNoExtension}.obj", 

            "args": [], 

            "problemMatcher": [], 

            "group": { 

                "kind": "build", 

                "isDefault": true 

            } 

        } 

    ] 

} 

From this point on when you have your main.c opened in the VSCode editor you simply press Ctrl+Shift+B, 

which will bring up the Build Task To Run option, there select “Build Using Watcom C++” and if there are no 

errors, press again the “Link Using Watcom C++” option and this should generate the DOS executable for 

you. Running it is as easy as installing DosBox on your system, and passing in the compiled and linked 

executable to DosBox as an argument. 

Don’t worry if it makes not too much sense, https://code.visualstudio.com/docs/editor/tasks has a full 

explanation on this mystical tasks.json, feel free to browse it. 

https://code.visualstudio.com/docs/editor/tasks


 
 

Your First C Program: the classical "Hello, World!" 

Let's begin with the classic "Hello, World!" program, which is a fundamental starting point for learning any 

programming language.   

#include <stdio.h> 

 

int main() { 

    printf("Hello, World!\n"); 

    return 0; 

} 

And a few lines of Explanation 

#include <stdio.h>: This is a preprocessor directive that includes the standard input/output library 

(stdio.h). This library provides functions for performing input and output operations, such as printing text 

to the console (printf) and reading input from the user (scanf).    

int main(): This is the main function. Every C program must have a main function, as it is the entry point 

where the program's execution begins. 

int: Specifies that the main function returns an integer value. 

return 0;: Indicates that the program has executed successfully. A non-zero value typically indicates an 

error. 

printf("Hello, World!\n");: This line uses the printf function to print the text "Hello, World!" to the 

console. 

\n: This is an escape sequence that represents a newline character. It moves the cursor to the beginning of 

the next line, so any subsequent output will appear on a new line. 

"Hello, World!\n": This is a string literal, which is a sequence of characters enclosed in double quotes. 

Variables and Data Types 

Variables are used to store data in a program.  Each variable has a name, a data type, and a value. The data 

type of a variable determines the type of data it can store.   

Common Data Types in C 

int: Used to store integer numbers (whole numbers without a fractional part), such as 10, -5, 0, and 1000. 

short int or short: A shorter integer, using less memory. 

long int or long: A longer integer, capable of storing a larger range of values. 

unsigned int: An integer that can only store non-negative values. 

float: Used to store single-precision floating-point numbers (numbers with a fractional part), such as 3.14, 

-2.5, and 0.001.   

double: Used to store double-precision floating-point numbers. double variables can store a wider range of 

values and provide more precision than float.   



 
 

char: Used to store single characters, such as 'A', 'b', and '5'. Characters are enclosed in single quotes.   

void: A special data type that represents the absence of a value. It is often used with functions that do not 

return a value. 

Declaring Variables 

Before you can use a variable, you must declare it. Declaring a variable involves specifying its data type and 

giving it a name. 

Syntax: data_type variable_name; 

int age; 

float height; 

char grade; 

You can also declare and initialize a variable in the same statement: 

int age = 25; 

float height = 5.9; 

char grade = 'A'; 

The following Example Program is demonstrating Variables and Data Types 

#include <stdio.h> 

int main() { 

    int age = 25; 

    float height = 5.9; 

    char grade = 'A'; 

    printf("Age: %d, Height: %.1f, Grade: %c\n", age, height, grade); 

    return 0; 

} 

Where the magic is explained as: 

%d: Format specifier for integers.    

%.1f: Format specifier for floating-point numbers, with 1 digit after the decimal point.   

%c: Format specifier for characters.    

Functions 

Functions are self-contained blocks of code that perform specific tasks and can be called more than one 

time without having to repeat the code performing the operation.  

Declaring and Defining Functions 

A function must be declared before it can be called.  The declaration tells the compiler about the function's 

name, return type, and parameters.  The definition provides the actual implementation of the function.   

Function Declaration (Function Prototype): 

return_type function_name(parameter_list); 

Where: 

return_type: The data type of the value that the function returns. If the function does not return a value, 

the return type is void. 



 
 

function_name: The name of the function. 

parameter_list: A comma-separated list of the function's parameters, along with their data types. If the 

function has no parameters, the parameter list is void or empty. 

Function Definition: 

return_type function_name(parameter_list) { 

    // Function body (code to be executed) 

    return value;  // Optional: return a value 

} 

The function definition includes the function header (the same as the declaration, but without the 

semicolon) and the function body, which is enclosed in curly braces {}. 

Function Call: 

To use a function, you call it by its name, followed by parentheses (). If the function takes any arguments, 

you pass them inside the parentheses. 

function_name(arguments); 

The following example program is demonstrating functions: 

#include <stdio.h> 

// Function declaration 

void greet(); 

int main() { 

    greet(); // Function call 

    return 0; 

} 

// Function definition 

void greet() { 

    printf("Hello from function!\n"); 

} 

Function Parameters and Return Values 

Functions can take parameters as input and return values as output.   

Parameters: 

Parameters are variables that are passed to a function when it is called. They allow you to provide data to 

the function so that it can perform its task. 

Return Values: 

A function can return a value to the caller using the return statement. The return value is the result of the 

function's computation, like we show in the following example. 

#include <stdio.h> 

 

// Function declaration 

int add(int a, int b); 

int main() { 

    int sum = add(3, 4); // Function call with arguments 

    printf("Sum: %d\n", sum); // Print the returned value 



 
 

    return 0; 

} 

// Function definition 

int add(int a, int b) { 

    return a + b; // Return the sum of a and b 

} 

Arrays 

An array is a collection of elements of the same data type, stored in contiguous memory locations.  Arrays 

provide a way to store and access multiple values of the same type using a single variable name.   

Declaring Arrays 

To declare an array, you specify the data type of the elements, the name of the array, and the number of 

elements in square brackets ``. 

Syntax: data_type array_name[size]; 

int numbers[5]; // Declares an integer array of size 5 

float temperatures[10]; // Declares a float array of size 10 

char name[20]; // Declares a character array (string) of size 20 

Initializing Arrays 

You can initialize an array when you declare it by providing a comma-separated list of values enclosed in 

curly braces {}. 

int numbers[5] = {1, 2, 3, 4, 5}; 

float temperatures[3] = {25.5, 28.0, 22.7}; 

char name[5] = {'J', 'o', 'h', 'n', '\0'}; // String initialization 

If you provide fewer initializers than the size of the array, the remaining elements will be initialized to their 

default values (e.g., 0 for integers, 0.0 for floating-point numbers, and \0 for characters). 

For character arrays representing strings, the null terminator \0 is used to mark the end of the string. 

Accessing Array Elements 

You can access individual elements of an array using the array name followed by the index of the element 

in square brackets []. Array indices start at 0 and go up to size-1.  Be warned: accessing array elements 

outside of this index interval might lead to program crashes and memory corruptions, and it is the main 

source of several similar problems. 

int firstNumber = numbers[0]; // Accesses the first element (value: 1) 

int thirdNumber = numbers[2]; // Accesses the third element (value: 3) 

numbers[1] = 10; // Modifies the second element (value becomes 10) 

The following example program is demonstrating arrays. Try to guess what is printed out on the screen 

before you run it. 

1. #include <stdio.h> 

2. int main() { 

3.     int numbers[5] = {1, 2, 3, 4, 5}; 

4.     for (int i = 0; i < 5; i++) { 

5.         printf("%d ", numbers[i]); // Print each element 



 
 

6.     } 

7.     printf("\n"); 

8.     return 0; 

9. } 

Pointers 

A pointer is a variable that stores the memory address of another variable. Pointers are a powerful feature 

of C that allows for direct memory manipulation and efficient data handling. 

Understanding Memory Addresses 

Every variable in a program occupies a specific location in the computer's memory. This memory location is 

identified by a unique address. When you declare a variable, the compiler allocates a block of memory to 

store its value. 

Declaring Pointers 

To declare a pointer, you specify the data type of the variable that the pointer will point to, followed by an 

asterisk *, and then the name of the pointer. 

Syntax: data_type *pointer_name; 

int *ptr; // Declares a pointer to an integer 

float *fptr; // Declares a pointer to a float 

char *chptr; // Declares a pointer to a character 

The Address-of Operator (&) 

The address-of operator & is used to obtain the memory address of a variable. 

int x = 10; 

int *ptr = &x; // ptr now stores the memory address of x 

The Dereference Operator (*) 

The dereference operator * is used to access the value stored at the memory address pointed to by a 

pointer. 

int x = 10; 

int *ptr = &x; 

int value = *ptr; // value now contains the value of x (10) 

Declaring and Using Pointers 

1. #include <stdio.h> 

2. int main() { 

3.     int x = 10; 

4.     int *ptr = &x; // ptr stores the address of x 

5.     printf("Value: %d, Address: %p\n", *ptr, ptr); 

6.     return 0; 

7. } 

Where the magic is: %p: Format specifier for printing memory addresses.    



 
 

Pointer Arithmetic 

Pointer arithmetic is the dark art of performing arithmetic operations on pointers, since they hold memory 

addresses (which are just plain numbers in the end), performing arithmetic on them allows you to navigate 

and manipulate memory locations in an array or data structure. Pointer arithmetic works by adjusting the 

pointer's value (the memory address it points to) in a way that takes into account the size of the type it 

points to. 

Pointer Increment and Decrement 

When you increment a pointer, it moves to the next memory location of the same data type. When you 

decrement it, it moves to the previous memory location. 

int arr= {10, 20, 30}; 

int *ptr = arr; // ptr points to the first element of arr (10) 

ptr++; // ptr now points to the second element of arr (20) 

ptr--; // ptr now points back to the first element of arr (10) 

Adding an Integer to a Pointer 

When you add an integer n to a pointer, it moves n memory locations forward, where each memory 

location has the size of the data type the pointer points to. 

int arr= {10, 20, 30}; 

int *ptr = arr; // ptr points to the first element of arr (10) 

ptr = ptr + 2; // ptr now points to the third element of arr (30) 

Subtracting Pointers 

You can subtract two pointers that point to elements of the same array. The result is the number of 

elements between the two pointers. 

int arr= {10, 20, 30, 40, 50}; 

int *ptr1 = &arr[1]; // ptr1 points to the second element (20) 

int *ptr2 = &arr[4]; // ptr2 points to the fifth element (50) 

int diff = ptr2 - ptr1; // diff is 3 (the number of elements between ptr1 and ptr2) 

Statements in C Language 

A statement in C is an instruction that the compiler can transform into binary code. Statements define what 

actions a program should perform, such as assigning values, making decisions, or looping. In the C language 

each statement typically ends with a semicolon (;). 

There are several type of statements in the language: 

• Expression Statements – Assignments, function calls, or operations. 

• Control Flow Statements – Change execution flow. 

• Conditional Statements 

• Looping Statements 

• Compound Statements (Blocks) – A group of statements inside {}. 

• Jump Statements – Alter program execution. 

For the first part of this tutorial we will cover the two most basic complex statements, the if and the for 

statements and if there will be a next episode of the tutorial we will explore the other ones too. 



 
 

The if statement 

An if/else statement in C is a control structure that allows a program to make decisions based on 

conditions. It evaluates an expression and executes different blocks of code depending on whether the 

condition is true or false. 

if (condition) { 

    // Code to execute if condition is true 

} else { 

    // Code to execute if condition is false 

} 

For example: 

int num = 10; 

 

if (num > 0) { 

    printf("The number is positive.\n"); 

} else { 

    printf("The number is not positive.\n"); 

} 

Explanation: 

If num is greater than 0, the program prints "The number is positive." 

Otherwise, it prints "The number is not positive." 

The for loop 

The for loop in C is a control flow statement that allows you to repeat a block of code a specific number of 

times. It's commonly used when the number of iterations is known beforehand.  

Here’s the basic syntax of a for loop: 

for (initialization; condition; increment) { 

    // Code to execute during each iteration 

} 

The loop consists of three main components: 

Initialization: Typically used to initialize a counter variable (e.g., int i = 0). 

Condition: The loop continues to execute as long as this condition evaluates to true (e.g., i < 10). 

Increment/Decrement: After each iteration, the counter variable is updated (e.g., i++). 

With these lines we conclude the first part of this quick C tutorial, which provides a short explanation of the 

fundamental concepts of C programming necessary to understand the application we planned for this 

edition of the magazine: a full-fledged ASCII table. If there will be a second issue of the magazine, we will 

dig deeper both in the C language and will uncover some of the hidden internals of system programming 

under DOS. 

  



 
 

  

The 
ASCII 
table 
from 
Hell 



 
 

The ASCII table (American Standard Code for Information Interchange) is a character encoding standard 

that represents text in computers and other devices that work with text. It assigns numeric values to 

letters, digits, punctuation, and control characters.  

The table is divided into two parts: the first 128 values (0-127) are known as Standard ASCII, which include 

control characters like line breaks and special symbols, and the uppercase and lowercase English alphabet. 

The Extended ASCII range (128-255) includes additional characters, such as accented letters, mathematical 

symbols, currency symbols, and other graphical characters, which vary depending on the character set 

used. These extended characters were introduced to address the need for characters in languages beyond 

English and for additional symbols required in specific regions or applications.  

While ASCII itself is a 7-bit encoding, Extended ASCII utilizes 8 bits and was designed for compatibility with 

8-bit systems, allowing up to 256 possible characters. The first 32 characters (0-31) of the table are control 

characters, and we’ll talk about them shortly. Characters in the extended range above 127 include symbols 

such as the Copyright (©), Pound (£), and Yen (¥) signs, as well as graphical and accented characters used 

in various languages. Extended ASCII has been largely replaced by UTF-8 and Unicode, which support a far 

wider range of characters, but the ASCII table remains foundational for understanding text encoding and is 

still widely used in computing. 

With all this in mind, our first attempt to print an ASCII table to the screen can be summed up by the 

following lines: 

#include <stdio.h> 

#include <conio.h> 

 

int main() { 

    for (int i = 0; i < 127; i += 6) { // Print six columns per row 

        for (int j = 0; j < 6 && (i + j) < 127; j++) { 

            printf("%3d %02X %c |  ", i + j, i + j, (char)(i + j)); 

        } 

        printf("\n"); 

    } 

    getch(); // Wait for key press before exiting 

    return 0; 

} 

It is not a very complicated concoction, and it can be summed like a naïve attempt to generate an ASCII 

table. A quick breakdown of the code is like the following: 

#include <stdio.h>: Standard library for input and output functions (printf). 

#include <conio.h>: A console I/O library (specific to MS-DOS/Windows compilers like our beloved 

OpenWatcom but also Turbo C) providing functions like getch(). It is not part of the C standard and is not 

available in modern compilers like GCC. Hm… so are these modern or not in this case? 

The interesting code happens in main, in the for loop: for (int i = 0; i < 127; i += 6). This loops 

through ASCII values from 0 to 126 (since ASCII values range from 0 to 127), and increments i by 6 each 

time to process six characters per row. 



 
 

The inner loop of this is: for (int j = 0; j < 6 && (i + j) < 127; j++) which runs up to 6 times 

per row (ensuring six characters are printed), and also by checking (i + j) < 127 it prevents going 

beyond the basic ASCII range. 

The line which looks like dark magic is: printf("%3d %02X %c |  ", i + j, i + j, (char)(i + j)); 

where the values are: 

%3d: Prints the decimal value right-aligned in a 3-character space. 

%02X: Prints the hexadecimal value using two uppercase digits (zero-padded if needed). 

%c: Prints the corresponding ASCII character. 

| : Separates each column for better readability. 

So, in essence this prints on the screen one entry from the ASCII table, as we have envisioned: firstly, the 

hexadecimal code, then the decimal code, and then finally the character itself.  

The printf("\n"); statement is responsible for printing a newline character, ie. to make the cursor jump 

to the beginning of the new line. The getch(); function call will just wait for a character to be pressed, and 

finally the return 0; will signal to the operating system that the program successfully ended. Which, upon 

executing, it produces the following wonderful result: 

 

Wonderful, ain’t it? Except those few funny lines at the beginning, it almost works as expected. But every 

search we do on the almighty internet for a proper ASCII table has all those characters printed too. So what 

might the problem be? The reason for this oddity is historical, we have to look way behind in time, in 

prehistoric era, before retro was a word: control characters. 



 
 

ASCII Control Characters (0-31) 

ASCII control characters are special, non-printable characters in the ASCII table, ranging from 0 to 31. They 

were originally designed for controlling various hardware. Most of these characters do not produce visible 

symbols when printed but instead perform control functions like moving the cursor, or ringing a bell. 

The most Commonly Used ASCII Control Characters are summarized below, and are: 

1. NUL (0x00): Often used as a string terminator in C. 

2. BEL (0x07): Produces a sound (beep) in terminals. 

3. BS (0x08): Works as a backspace. 

4. TAB (0x09): Moves the cursor to the next tab stop. 

5. LF (0x0A) & CR (0x0D): Used for newlines (\n) and carriage returns (\r). 

6. ESC (0x1B): Used in ANSI escape sequences for formatting terminal output. 

So, in essence ASCII control characters do not display like normal text but perform control functions. They 

were essential in early computing (teletype machines, terminals, printers). Some are still widely used in 

serial communication, terminal formatting, and text processing. Now, we see why we can’t see a thing 

when we print some special characters onto the screen. 

In order to circumvent this problem, we will need to assess the problem from a different point of view. But 

beware, dear reader, now we indeed will step into the domain of black magic programming, covering quite 

advanced topics. If you are a beginner, feel free to read on, but don’t despair if there are some notions that 

are not clear from the beginning. We will try to explain these as detailed as possible though. 

The ASCII table from Heaven 

So, as a very first big drop, we will throw you, dear reader in the deep water, and show you the full ASCII 

table we intend to draw, with beautiful blue background for the numbers, black background for the 

characters and heavenly colors for the various other representable bits of the information (please ignore 

the cursor on the first line, it is there just to annoy us). 

 



 
 

Wonderful, isn’t it? Our second big drop follows: here is the full source code of the program that draws it. 

Please churn through it initially, and it will be followed by a through explanation. 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <conio.h> 

#include <graph.h> 

#include <i86.h> 

#include <stdint.h> 

// The constants section 

const int Black      = 0; 

const int Blue       = 1; 

const int White      = 7; 

const int LightYellow= 14; 

const int ROWS = 25; 

const int COLS = 80; 

// will clear the screen 

void clearscr(void* scrSeg) { 

    for(int i = 0;i<ROWS * COLS; i++) {  

        *((uint16_t*)scrSeg  + i) = 0x0720; 

    } // color, character 

} 

// writes a character at the given position, with the given colors 

void writeChar(int x, int y, char bck, char col, char chh, void* scrSeg) { 

    *((char*)scrSeg + (y * COLS + x) * 2) = chh; 

    *((char*)scrSeg + (y * COLS + x) * 2 + 1) = bck << 4 | col ; 

} 

// writes a string at the given position, with the colors on the screen 

void writeString(int x, int y, char bck, char col, const char* s, void* seg) { 

    int l = strlen(s); 

    for(int i=0; i<l; i++) { 

        writeChar(x+i, y, bck, col, s[i], seg); 

    } 

} 

// main entrypoint 

int main(int argc, char* argv[]) { 

    _setvideomode( _TEXTC80 ); 

    void __far * screen = MK_FP(0xb800, 0); 

    int cc = 0; 

    for (int i=0; i< 16; i++) { 

        for (int j=0; j< 16; j++) { 

            writeChar(i * 5 + 4, j, Black, White, cc, screen); 

            char s[5] = {0}; 

            sprintf(s, "%4i", cc); 

            writeString(i * 5, j, Blue, LightYellow, s, screen); 

            cc ++; 

        } 

    } 

    getch(); 

    clearscr(screen); 

} 



 
 

Now, dear reader, if you consider that you are an advanced level programmer, we still think this program 

could show you a few perky details, if not, we really admire your level of knowledge and would like to invite 

you to write an article for the next iteration of the magazine. However, for our beginner to intermediate 

level friends, here is a detailed, line by line explanation. 

Inclusion of Header Files 

The program starts by including a set of the most commonly used C header files, and also a few ones that 

are specific to OpenWatcom and also the DOS environment. 

• #include <stdio.h>: This line includes the standard input/output library. In DOS, this provides 

functions like sprintf which is used later to format numbers into strings. These functions are 

typically implemented by the OpenWatcom C++ runtime library to interact with the DOS operating 

system for tasks like formatted output. 

• #include <stdlib.h>: This includes the standard library, offering general-purpose functions. 

While not directly used in this specific program, it's often included as it contains functions like 

memory allocation (malloc, free) and conversions (atoi, atol) that might be needed in other 

programs, so we showcase it for future reference. 

• #include <string.h>: This includes the string manipulation library. Here, the function strlen is 

used to determine the length of a string before printing it. In DOS, strings are typically null-

terminated character arrays, and these functions operate on them. 

• #include <conio.h>: This header is specific to console input/output in DOS and provides 

functions like getch(), which waits for a key press from the user. This library often interacts directly 

with the BIOS (Basic Input/Output System) of the PC to handle keyboard input. 

• #include <graph.h>: This header is part of the OpenWatcom graphics library. While the name 

suggests graphics, in this particular program, only the function _setvideomode is used, and it's used 

to set the video mode to a text mode. This library provides a higher-level abstraction over direct 

hardware manipulation for video display. 

• #include <i86.h>: This header provides functions that allow direct interaction with the Intel 8086 

(and its successors like the 286, 386 in real mode, which DOS typically runs on) architecture. The 

function used here is MK_FP, which is used to create a far pointer. In DOS's segmented memory 

model, far pointers are essential for accessing memory outside the current data segment. 

• #include <stdint.h>: This header defines standard integer types with specific widths, like 

uint16_t (unsigned 16-bit integer). This ensures portability and clarity about the size of integer 

variables. 

Defining the Color Constants 

The next important phase in the application is defining a few constants, because it is simply a bad practice 

to use magic numbers, it is more recommended to create constant having assigned the value of number 

which have specific meanings in your programs and name them to properly describe what they mean. 

• const int Black = 0;: This declares a constant integer named Black and assigns it the value 0. 

This represents the color black in the standard VGA text mode palette. 



 
 

• const int Blue = 1;: Similarly, this defines Blue as 1, representing the blue color. 

• const int White = 7;: White is defined as 7, representing the white color. 

• const int LightYellow= 14;: LightYellow is defined as 14, representing a bright yellow color. 

These integer values correspond to the color codes used in the attribute byte of the VGA text mode. 

Feel free to experiment with other colors, up to 16. Not that we cannot give you the entire color 

table, but it’s more fun when you discover it. 

Defining the Screen Size Constants 

• const int ROWS = 25;: This defines the standard number of rows in a typical DOS text mode 

screen (25 lines). 

• const int COLS = 80;: This defines the standard number of columns in a typical DOS text mode 

screen (80 characters per line). 

The clearscr Function 

The void clearscr(void* scrSeg) { ... } function is designed to clear the text mode screen. It takes 

a void* scrSeg as input, which is expected to be the segment address of the video memory. Don’t worry 

if at this stage this makes no sense, we will explain in a tad these complex notions. 

The loop for(int i = 0; i < ROWS * COLS; i++) { ... } iterates through each character cell on the 

screen. The total number of cells is ROWS * COLS (25 * 80 = 2000). 

The magic happens in *((uint16_t*)scrSeg  + i) = 0x0720;.This is the core of the screen clearing 

logic. Let's break it down further:  

• scrSeg: This is a pointer to the beginning of the video memory. In text mode, each character on the 

screen is represented by two consecutive bytes in memory. 

• (uint16_t*)scrSeg: This casts the void* pointer scrSeg to a pointer to an unsigned 16-bit 

integer. This is done because we want to treat each character cell (character + attribute) as a single 

16-bit unit. 

• + i: This adds the loop counter i to the pointer. Since the pointer is now a uint16_t*, adding i 

effectively moves the pointer i * 2 bytes forward in memory, addressing each character cell 

sequentially. 

• *((uint16_t*)scrSeg  + i): The asterisk * dereferences the pointer, meaning it accesses the 16-

bit value at that memory location. 

• = 0x0720;: This assigns the hexadecimal value 0x0720 to the current character cell.  

o 0x20: This is the ASCII code for the space character. This will be the character displayed on 

the screen: the space character, the total voidness. 

o 0x07: This is the attribute byte. In a standard color text mode, the attribute byte has the 

format (background << 4) | foreground. Here, 0x07 means a black background (0) and 

a white foreground (7). 



 
 

o Therefore, this line writes a white space character on a black background to each position on 

the screen, effectively clearing it. 

The writeChar Function: 

The void writeChar(int x, int y, char bck, char col, char chh, void* scrSeg) { ... } 

function writes a single character (chh) at a specified position (x, y) on the screen (scrSeg) with the given 

background (bck)  and foreground (col) colors. 

There are two magic lines in this piece of code: 

• *((char*)scrSeg + (y * COLS + x) * 2) = chh;: This line writes the character itself to the 

video memory.  

o (y * COLS + x): This calculates the linear index of the character cell on the screen. y is the 

row number (0-based), and x is the column number (0-based). Multiplying y by COLS gives 

the offset to the beginning of that row, and adding x gives the offset to the specific column 

in that row. 

o * 2: Since each character cell occupies two bytes (one for the character and one for the 

attribute), we multiply the linear index by 2 to get the byte offset from the beginning of the 

video memory. 

o (char*)scrSeg: This casts the void* pointer to a pointer to a single character (byte). 

o *((char*)scrSeg + (y * COLS + x) * 2): This dereferences the pointer to access the 

first byte of the character cell. 

o = chh;: This assigns the character chh to this memory location. 

• *((char*)scrSeg + (y * COLS + x) * 2 + 1) = bck << 4 | col ;: This line writes the 

attribute byte (colors) for the character.  

o The memory address calculation is the same as before, but we add + 1 to access the second 

byte of the character cell, which is the attribute byte. 

o bck << 4: This takes the background color code (bck) and shifts its bits four positions to the 

left. This places the background color in the higher four bits of the attribute byte. 

o | col: This performs a bitwise OR operation with the foreground color code (col). This 

places the foreground color in the lower four bits of the attribute byte. 

o The resulting byte, containing both background and foreground color information, is then 

written to the attribute byte location in video memory. 

The writeString Function 

The void writeString(int x, int y, char bck, char col, const char* s, void* seg) function 

writes an entire null-terminated string (s) at a specified position (x, y) with given colors at the given 

segment, representing the screen. 

The statements in this function are not that magical, so we just show them here in their daily mundanity. 



 
 

• int l = strlen(s);: This line calculates the length of the input string s using the strlen 

function. It is recommended good practice to not to call functions in a loop for values that can be 

pre-calculated before the body of the loop in order to optimize the code a bit, ie. to extract the 

information before. Modern compilers are good at optimizing these away, older compilers need 

help with these constructs. 

• for(int i=0; i<l; i++) { ... }: This loop iterates through each character in the string. 

• writeChar(x+i, y, bck, col, s[i], seg);: Inside the loop, we call the writeChar function for 

each character in the string.  

o x+i: The x-coordinate is incremented by i in each iteration, so the characters are written 

sequentially across the row. 

o y: The y-coordinate (row) remains the same for the entire string. 

o bck, col: The background and foreground colors are the same for the entire string. 

o s[i]: This accesses the character at the current index i in the string. 

o seg: The segment address of the video memory as we got from the caller function. 

The main Function  

This is The Program's Entry Point, this where the execution of the program begins: int main(int argc, 

char* argv) { ... }where argc represents the number of command-line arguments, and argv is an 

array of strings containing those arguments. In this simple program, these are not used. 

• _setvideomode( _TEXTC80 );: This is a function from the OpenWatcom graphics library, we 

included via the graph.h header. It sets the video mode of the display. _TEXTC80 is a constant that 

specifies an 80-column color text mode. This ensures that the program operates in a standard text 

mode environment where it can directly manipulate the video memory. 

• void __far * screen = MK_FP(0xb800, 0);: This is the most important line for accessing the 

video memory in DOS: 

o 0xb800: This is the standard hexadecimal segment address in DOS for the video memory 

buffer when the system is in color text mode (like the one we just set with _setvideomode). 

o 0: This is the offset within the segment. We want to start at the very beginning of the video 

memory for this segment. 

o MK_FP(0xb800, 0): This macro, defined in i86.h, takes a segment and an offset as 

arguments and creates a far pointer. In DOS's segmented memory architecture, a far pointer 

consists of a 16-bit segment and a 16-bit offset, allowing access to memory outside the 

default data segment of the application, such as the video memory which resides at a fixed 

segment address: 0xB800:0x0000. 

o void __far * screen: This declares a far pointer named screen that points to a memory 

location. The __far keyword is an OpenWatcom extension that explicitly indicates a far 

pointer. 



 
 

o So, the screen pointer now holds the address of the beginning of the video memory buffer. 

• int cc = 0;: This initializes an integer variable cc (short for "character counter") to 0. This 

certainly could have been an unsigned char too but then we would encounter some warnings later 

when using in sprintf, so let’s make it int. 

• for (int i=0; i< 16; i++) { ... }: This is the outer loop, iterating 16 times (from 0 to 15). 

o for (int j=0; j< 16; j++) { ... }: This is the inner loop, also iterating 16 times (from 

0 t o 15). These nested loops will run a total of 16 * 16 = 256 times, just as many times as 

there are ASCII characters in the extended ASCII table. What a coincidence. 

▪ writeChar(i * 5 + 4, j, Black, White, cc, screen);: Inside the inner loop, 

this line writes a single character to the screen.  

▪ i * 5 + 4: This calculates the x-coordinate (column) for the character. It 

spaces out the characters horizontally by 5 columns and starts with an offset 

of 4. 

▪ j: This uses the inner loop counter j as the y-coordinate (row). 

▪ Black, White: The character will be displayed with a black background and a 

white foreground as defined in the constants section. 

▪ cc: The current value of the cc counter is cast to a char and displayed. As cc 

goes from 0 to 255, it will represent the ASCII codes of various characters. 

▪ screen: The pointer to the video memory. 

▪ char s[5] = {0};: This declares a character array named s of size 5 and initializes 

all its elements to the null terminator (\0). This array will be used to store the string 

representation of the cc value. 

▪ sprintf(s, "%4i", cc);: This function from stdio.h formats the integer value of 

cc into a string and stores it in the s array.  

▪ %4i: This format specifier tells sprintf to format the integer as a decimal 

number (i) and to pad it with spaces on the left if necessary so that it 

occupies a total of 4 characters. 

▪ cc: The value of cc is passed as the argument to be formatted. 

▪ The resulting string (e.g., " 0", " 1", ..., "255") is stored in the s array. 

▪ writeString(i * 5, j, Blue, LightYellow, s, screen);: This line writes the 

formatted string s to the screen.  

▪ i * 5: This calculates the x-coordinate for the string. It's placed 4 columns to 

the left of the single character written in the previous line. 

▪ j: The same row as the single character. 



 
 

▪ Blue, LightYellow: The string will be displayed with a blue background and 

a light yellow foreground. 

▪ s: The formatted string representation of the cc value. 

▪ screen: The pointer to the video memory. 

▪ cc ++;: This increments the cc counter for the next iteration of the inner loop. 

• getch();: This function from conio.h waits for the user to press any key. The program will pause 

here until a key is pressed, allowing the user to see the output on the screen. 

• clearscr(screen);: Once a key is pressed, this line calls the clearscr function to clear the screen. 

This is often done before the program exits, leaving the console in a clean state. 

• return 0;: This indicates that the main function has executed successfully. 

And that’s all. Before we end our article, just a few lines about DOS and memory: DOS utilized a segmented 

memory model in its real-mode operation, where the 1MB of addressable memory was divided into 64KB 

segments. Memory locations were identified by a logical address consisting of a 16-bit segment address, 

stored in segment registers like CS, DS, SS, and ES, and a 16-bit offset within that segment.  

The CPU calculated the physical address by shifting the segment address four bits to the left and adding the 

offset. This architecture, while allowing access to more memory than a single 16-bit address space, 

imposed a 64KB limit on the size of individual segments. This segmented approach introduced complexities 

for programmers, requiring them to manage segment boundaries and utilize near pointers for within-

segment access and far pointers (segment:offset pairs) for accessing memory in different segments. 

Different memory models were developed to provide varying levels of abstraction and manage these 

segment limitations for different program needs. In contrast, modern operating systems typically employ a 

flat memory model, offering a simpler, contiguous address space. 

With these lines, dear readers, we conclude our ASCII table from heaven, and thanks to the support 

provided by DOS’s unhinged memory access to display a comprehensive ASCII table on the screen we 

achieve this by directly manipulating the video memory located at segment address 0xB800. Our heavenly 

program writes pairs of bytes to this memory region, where the first byte represents the ASCII character 

code and the second byte defines its display attributes, including foreground and background colors. 

Operating within the DOS environment, the program utilizes far pointers to access the video memory. This 

example illustrates a common technique in DOS programming for achieving efficient text-based output 

through direct hardware interaction. 

So, keep on reading, and Happy coding!  



  

The Children of 

Chaos: The Birth of 

the Romanian 

Hacker culture 

 



There were 23 of us. Crowded into a small 
room no larger than 3x4 meter, we were 
amongst the first generation of high school 
students officially granted the opportunity to 
earn the title of “Licentiate in Software 
Engineering” - provided we passed our final 
exam after four years. The year is 1993, and 
Romania is still struggling to find its path 
toward economic stability and social welfare 
while grappling with its past. Access to 
Western technology remains limited, but a 
growing curiosity about computers and 
rumors of this new thing, called the internet is 
taking hold among the youth. 

While our small provincial town was still years 
away from the miraculous arrival of the 
internet, we were hardly deprived of 
technology. Our school was extravagantly 
stocked with a grand total of four fully 
functional Apple-IIc machines - and one 
massive, mysterious beast that hadn’t graced 
us with its presence the year before, back 
when our optional Computer Science class in 
junior high offered us a rare peek into the so-
called future. 

Following the timeless human instinct of “stick 
to what you know,” my 22 classmates eagerly 
rushed to claim the familiar Apple machines, 
ready to power them on like seasoned pros. 
Meanwhile, I, being perpetually late for 
everything, was left with the only remaining 
seat, right in front of the strange, intimidating 
beast. 

It was huge, almost twice the size of those 
sweet little Apples, it had a big red switch on 
the side, I anticipated to be the power button, 
the keyboard was larger than anything I have 
ever seen, with weird keys, like F1, F2, ... and I 
had no idea what it was... but since it looked 
like a computer, felt like a computer and after 
pressing the red switch it started acting like a 
computer, I guessed that it must be a 
computer. 

Our first assignment for the hour was to write 
a small BASIC program, that would ask the 
user for two numbers, and add them together. 
Not an overly complicated task, considering 
that most of us had some introduction to 
Apple BASIC the previous year, so some of us 
quickly came up with the solution: 



Elementary, ain’t it, dear Reader? Just like charm, the 
program runs and does what you want it to do: 

 

And there was I sitting in front of the unfriendly beast, 
doing my best, annoying my peers with the loud clicks of 
the clikety-click keyboard: 

 

All of this was completely new to me - even the language. 
We hadn’t had a proper English class until then, and my 
entire knowledge of the language came from the set of 
basic BASIC commands from last years’ course and of 
course watching American movies from the late '80s and 
early '90s - freshly out of Hollywood and straight onto our 
screens. They provided a much-needed escape from the 
ever-present face of our revered leader, the fearless 
Conducător of the country, whose eternal presence 
conveniently filled most of the meager two-hour daily TV 
schedule during the dark days of the communist regime. So 
naturally, saying “Hasta la vista, baby” rolled off my tongue 
far more easily than anything technical. The word 
command instantly made me think of Commando, and I 
missed The Good and The Ugly … and now suddenly, there I 
was, staring down this unforgiving beast as it bombarded 
me with cryptic errors about things I had never even heard 
of. 

Thankfully, my teacher quickly caught on to my confusion.   

“Hey, you see, this is an IBM machine. We got it in an aid 
package this summer. It’s more complex than the Apples 
we’ve been using. Would you mind sitting with one of your 
classmates until we figure out what to do with it?”   

I minded.   

There were already five students crowded around each 
Apple, while here I had an entire, albeit unfamiliar wonder 
all to myself. Faced with the choice between abandoning 
something new and intriguing or retreating to the comfort 
of the familiar and share a keyboard for ten other hands, 
my stubbornness kicked in.   

“Sorry, sir, I’d rather sit here”   

He nodded. “Well, good then. Here’s the book that came 
with it - figure out what to do with it”, then left me figuring 
it out, focusing on other students who somehow got 
confused down the road. The book was the MSDOS 
Reference book, for version 3.3, which after a while I have 
learned came with the machine. I even was allowed to take 
the book home for the weekend, where armed with a tiny 
English-Hungarian dictionary I learned the famous VER 
command, slowly deciphered the mysteries of directories 
using DIR, and learned that it was the hard-drive making 

the bell like sounds when the machine started. All this in 
theory, of course, but I was instantly hooked. 

By the time we returned to school the following rainy 
Monday morning, I already knew what to do with the 
machine. It was my moment to show off. 

I powered it on, navigated through the directories, and, 
armed with the reference book, slowly identified various 
applications I recognized from its pages. Then, suddenly, a 
familiar word jumped out at me: QBASIC.EXE. 

After all, we had learned BASIC - but the DOS book barely 
mentioned it, aside from acknowledging its existence as a 
programming language. I hesitated for a few minutes, 
unsure, before finally mustering the courage to type 
QBASIC.EXE. And what appeared on the screen was an 

entirely new universe dedicated to programming. Totally 
different from the Apple-II, no more line numbers before 
commands, the freedom to navigate through the code, and 
an entire Help system at my disposal… Though, I have to 
admit - the very first time when I pressed “by mistake” the 
universal help (F1) key in the QBasic editor, I panicked. My 
program vanished, strange text appeared, and for a 
terrifying moment, I had no idea how to bring it back. But 
with the help of my faithful dictionary which I have carried 
with me to the schools for several weeks on, we quickly 
remediated the situation and got back my lost program. 

These were the humble beginnings, but things were about 
to change. 

Soon, we got a real upgrade - a dozen or so 286 machines 
armed with amber screens, courtesy of our sister school in 
Hungary, set up to run in the confines of a novel Novell 
network. The trusty XT where I’d written my first lines of 
code was promoted to server status, and before long, we 
all had a real IPX network. 

Computer science students were expected to help set the 
network up (in the end, it was for our own benefit), so we 
spent several afternoons wiring cables, fixing terminators, 
and verifying the functionality of the machines—all of it 
mostly by trial and error. There were no detailed 
instructions or guides; we only had one clear direction: 
“This is what it’s supposed to do, this is how it’s supposed 
to look; cable here, terminator there, put it in the network 
card. Make it work, and don’t break anything”. It was 
almost a technical miracle that we got it to work. But by the 
end, we knew our network inside out - like the back of our 
hand. Well, except for the most important detail: the 
supervisor password. That privilege was reserved for our 
teacher. 

With the introduction of these cutting-edge new 
technologies (I mean, it's 1994, right?), we also decided to 
part ways with the beloved language of choice for 
beginners and graduate to something more decent: Turbo 
Pascal. It was around this time that our class began to 
shrink, with more than half of the students transferring to 
less demanding fields - coincidentally, right when pointers 
and memory management were introduced. Funny how 
that works, isn’t it? 

Looking back, the most interesting part is that, in those 
days, we had no manuals, no clear national curriculum for 
teaching computer science. Everything we learned came 



from a patchwork of university papers and courses, 
courtesy of our teacher—a man who had returned to his 
small provincial hometown to teach a bunch of high 
schoolers the mysteries of computing. 

There was a sort of unofficial roadmap: first, you were 
supposed to learn Algorithms—because who doesn’t love 
coding a bubble sort? Then, the following year, you’d move 
on to Graphics—because nothing was more refreshing than 
drawing a moving, ticking clock with the BGI library. And 
with each passing year, with each new subject we were 
exposed to, our numbers dwindled.  

But those of us who stayed? We were a curious bunch. 
Stubborn, technical, like-minded, obsessed with computers 
and hungry for knowledge. And connected. 

Because most importantly, we had contact with other 
schools. There were numerous competitions and Olympiads, 
mostly in the hard sciences - mathematics, computer 
science, physics. Whenever we visited another school, the 
first place we searched for was, of course, the computer lab. 
To our amazement, some of them had an entire room filled 
with color-screen computers. Meanwhile, in our school, we 
had exactly one. But then again, some schools we visited 
had only one or two computers total - 
even worse than our aging fleet of 
286s. 

But common to all of these schools 
was, that they had their own small 
circle of hungry minds - students 
eagerly working with computers, 
pushing the limits of what was 
possible, constantly experimenting. 
With no dedicated curriculum and no 
proper documentation and materials 
to explain the inner workings of a 
computer, everything was one 
massive, living, breathing experiment. 
An experiment that transcended 
classrooms, connecting students 
across schools, cities, and even counties.  

While students in the West enjoyed the luxury of the 
internet, had email, access to forums with plethora of 
information, we had something more tangible: each other. 
Together with name, face, home addresses (not 127.0.0.1. 
but street, house, apartment), eventual phone numbers 
and envelopes just the right size to fit a floppy disk or two, 
carefully wrapped in aluminum foil for protection. 

Someone, really bored at a school, one lazy afternoon 
discovered that calling interrupt 0x19 would instantly 
restart their computer. Because, really, what else would 
you do in your free time after you get your hands on some 
obscure documentation smuggled in from the decadent 
West. Meticulously go through each interrupt, write a small 
program to call it, observe what happens, and take notes—
by hand, on actual paper. Then copy the paper several 
times, put them in envelopes and send to your friends. By 
the following week, students across the country were all 
doing the same thing: experimenting with interrupts like it 
was the next big thing in computing. For us it was. And then, 
across the country, baffled teachers were left wondering - 

why were computers suddenly restarting at random, with 
no one even touching them? 

We didn’t have access to the full Ralf Brown's interrupt list, 
nor did Peter Norton’s award-winning book ever make its 
way into our hands. We didn’t even know they existed. Our 
teachers were clueless about these details. But we had to 
figure it out, we needed to know, and we patched together 
the bits and bytes from various sources. 

Some of us took this further. Suddenly sitting down to a 
computer was not what it used to be: simulated startup 
boot sequences, meticulously imitating a real boot, in the 
end asking for your password to log in were the norm for 
several weeks. Some of us took this even further: we 
learned how to write TSR programs (remember, these are 
still DOS days, and regardless that we didn’t own a copy of 
Undocumented DOS, we still pieced it out using scratches 
of information gathered from several sources).  

Now, no-one was safe: all keypresses were logged in a 
secret file, deeply burrowed in a claustrophobic hierarchy 
of intertwined folders, so that no-one finds them by 
mistake. We shared this knowledge with friends from other 
schools. As a special thank you gift, they shared with us 

what have they discovered: XOR based 
encryption. Now, we could keep all our 
secrets hiding in plain sight. 

Around this time, the highly influential 
book "Applied Cryptography: Protocols, 
Algorithms, and Source Code in C" by 
Bruce Schneier was making waves, but 
we had no idea it even existed. Instead, 
we went directly against its most 
important piece of advice: "Never roll 
your own cryptography routines" - and 
invented our own algorithms.  

We didn’t even call it cryptography. No, 
we dubbed it “secretizing” - because, 
at the time, we had no clue there was 

already a proper term for it. Honestly, we were just 15-
year-old high school students, with a curriculum that didn’t 
touch on any of these advanced topics. We were expected 
to solve endless Towers of Hanoi, and as long as we 
managed that, our passing grade was practically 
guaranteed. 

But the flow of information between friends did not stop. 
And, sadly, with the information also other unwelcomed 
guests creeped into our computers. Not intentionally, or 
course. Or not. The mid-90s marked the rise of the real fear 
of computer viruses, and we weren’t immune to it either. 
Back then, amongst us, information was exchanged 
exclusively hand-to-hand on floppy disks, long before 
emails and broadband internet made downloads the norm... 
We actually had no internet for at least the following 8 or 9 
years, but regardless, it was an exciting time - friends would 
eagerly swap the latest games, homemade programs, 
tutorials, never thinking twice about what might be lurking 
unseen. But as the number of viruses grew, so did the 
paranoia. Every disk was a potential Trojan horse, and some 
of the most infamous viruses could spread like wildfire 
before you even realized something was wrong. We’d pass 
around antivirus tools alongside our favorite software, 



hoping they’d be enough to catch infections before they 
could wreak havoc. It was a game of trust, caution, and 
sometimes, unfortunate lessons learned the hard way. 

But some viruses were simply too new, even for our latest 
antivirus software - how inconvenient. That’s when we 
knew it was time to step up. If a well-known EXE started 
misbehaving, such as exposing longer than usual startup 
times, a size that was different than yesterday, or worse, if 
our once-trusty floppies suddenly refused to boot, we knew 
had a problem. Commercial antivirus? Sure, it caught last 
month's threats, but the real fun started when we had to 
play digital detectives ourselves. 

Armed with DOS-based hex editors, disassemblers like 
Source, debuggers like Turbo Debugger or just plain debug, 
homemade honeypots, and an unhealthy amount of 
curiosity, we cracked open the infected files. We’d look for 
telltale patterns - strange jumps, code that makes no sense, 
or that all-too-familiar "INT 13h" call that meant a boot 
sector was getting trashed at some point. Sometimes, we'd 
find a crude signature left behind by the virus author, as if 
they expected us to appreciate their handiwork (Greetings, 
Windom Earle, author of the nondestructive Farside virus ... 
it took us 2 weeks to write a cleaner for programs infected 
with your virus ... and did not call that number). 

Once we figured out how the virus spread - maybe hooking 
into the boot sector, maybe hijacking COMMAND.COM, 
maybe something else, it was time to fight back. We 
patched binaries, wrote tiny routines to nuke the infection, 
and sometimes even cobbled together our own crude 
"antivirus" tools in Turbo Pascal or C, which we picked up 
alongside the road from various sources, since again, we 
had no proper teaching material 
dedicated to it. These programs 
certainly were not exactly F-PROT-
grade, but hey, they worked. Of 
course, by the time we got everything 
cleaned up, another virus was making 
the rounds. But that was just part of 
the game, wasn't it?  

And as time rolled on, so did we. 
The cat-and-mouse game of 
viruses and catching them had 
been a thrilling playground, but 
eventually, our paths diverged. We 
slowly finished high school, moved on to 
university to get a diploma, fill our brain with 
mostly useless and outdated subjects, and forget all the 
interesting stuff we learned in high school. Some of us 
moved into entirely different fields beyond programming, 
finding our calling as architects, lawyers, priests, and 
teachers. 

Then, others stayed with the computers and moved on to 
more interesting endeavors - after all, there were always 
new frontiers to explore. The writer of these lines, for 
instance, found a new obsession in the mesmerizing world 
of intros, demos, and graphical wizardry, where 
mathematics became the brush and the screen the canvas. 
Turning raw numbers into stunning visuals felt just as 
thrilling as dissecting malware, only now, the goal was to 
create new graphics effects never seen till then. 

The most dedicated among us discovered a passion for 
security research, learning more and more advanced topics 
to break systems and then fix them. By the late ‘90s, 
international cybersecurity firms started noticing these 
talented individuals, and suddenly, the same skills that 
once got people in trouble were landing them jobs. By the 
2000s, Romania had built a global reputation - not just for 
cybercrime, but for cybersecurity expertise. Today, many of 
us who once stayed up all night dissecting viruses and 
breaking computers are working for top firms, protecting 
the very systems you are using to read these lines. 

And then, some others pursued the darker path, crossing 
the thin line between curiosity and something a little less 
innocent. Their names started showing up in places we 
wished they hadn’t—local news reports, TV programs, even 
an article about a school network mysteriously crashing 
right before an important exam. Their deeds were 
whispered about in tight-knit circles, but everyone knew 
the truth: it was just a small mistake, born from curiosity 
and a lack of knowing where to stop 

Finally, there were those who strayed too far. As e-
commerce took off, some saw an opportunity not just to 
explore, but to profit. Credit card fraud became a booming 
underground industry, with hackers finding ways to steal 
credit card data through phishing schemes, compromised 
payment systems, and brute-force attacks on online stores. 
The more ambitious ones didn’t just use stolen cards to 
make purchases - they built entire operations, selling card 
details in hidden online forums, creating fake storefronts to 
harvest credentials, or laundering money through 
increasingly sophisticated techniques. 

These operations became so extensive that they 
triggered large-scale international investigations, 
with agencies like the FBI, Europol, and Interpol 
working together to track down and dismantle 
these cybercrime networks leading to high-profile 
arrests and crackdowns, but by then, the damage 

had already been done - and the legend of 
Romania’s hackers was cemented in digital 

history. 

As I look back, In the end, we were just a 
generation of kids with a relentless 

curiosity, growing up in a time 
and place where knowledge was 

scarce but determination was 
boundless. We built networks before we fully understood 
them, wrote programs before we knew the theory, and 
experimented with systems just to see what would happen. 
Some of us turned this passion into careers, helping secure 
the very technology we once broke, while others took a 
different path, lured by the opportunities that an 
unregulated digital world provided. But whether we 
became cybersecurity experts, software engineers, or 
infamous figures in underground circles, we all shared the 
same beginning - the thrill of discovery, the hunger for 
knowledge, and the unshakable belief that every locked 
door was just another challenge waiting to be solved. 

Funny how things turn out. 



 

 

 

 

 

 

     retrowtf25@gmail.com 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Next issue will 

When it’s 

© 2025 RetroWTF. All rights reserved. The original contents of this magazine, including but not limited to its articles, artwork, graphics, and 
intellectual property, possibly are protected under copyright law and international treaties, but at this moment we don’t really know or care. 
Any reproduction, redistribution, or dissemination of this material in whole or in part, by any means now known or hereafter devised, is 
strictly encouraged. While we wholeheartedly motivate the spirited exchange of ideas within the retro gaming and programming community, 
we humbly request that all references to this magazine and its contents be properly credited. Failure to do so will result in the full wrath of the 
retro guardians. Screenshots, logos, and other trademarked material from video games and related properties featured in this magazine are 
the copyright of their respective holders. All such images are used with the utmost respect for their intellectual property rights and remain the 
exclusive property of their creators and owners. No infringement is intended, and all such materials are reproduced for the purposes of 
critique, presentation, education, and historical preservation.   
 



 


