

The Elder Scrolls IV: Oblivion

has officially returned in the form of a full remastered edition. Developed by

new life into the 2006 RPG classic, blending updated visuals and gameplay mechanics

The most immediate change fans will notice is the visual overhaul. Oblivion Remastered

has been rebuilt using Unreal Engine 5, providing dramatically improved lighting,

the ivory towers of the Imperial City, and the eerie portals of the Shivering Isles now

The audio design has been remastered as well, with enhanced ambient sounds, dynamic

character using old voice recordings of Todd Howard, adding a nostalgic and quirky

One of the biggest criticisms of the original Oblivion was its outdated mechanics,

especially in areas like stealth, archery, and character progression. The remaster

addresses these issues with careful refinements: stamina management is more intuitive,

The response from the gaming community has been largely positive, though not without

mixed feelings. On Facebook pages like TheGamer and IGN, longtime fans expressed

genuine excitement at returning to Cyrodiil in such high quality. Many praised the

However, some criticism has emerged. A portion of players pointed out bugs that have

persisted since the original release, and others questioned whether the remaster

project recreating Oblivion inside the Skyrim engine. Still, many acknowledge the

Another popular feature is the robust character creator, which has been enhanced to

allow for more realistic and expressive faces. Social media has been flooded with

screenshots of celebrity lookalikes, hilarious abominations, and creative takes on

A Shift in Aesthetic: From Vivid Fantasy to Realistic

While many players praised the remaster's visual fidelity and technical advancements,

not all reactions have been celebratory. A notable thread of criticism has emerged

for its lush green hills, glowing magical effects, and warm, saturated tones that gave the

The lighting system, while physically accurate, often casts a neutral tone over

environments, making regions feel visually uniform. Some players have voiced concerns

once felt enchanted now look like generic woodland; mystical cities like Chorrol and

now,” one fan lamented in a Facebook comment, echoing a sentiment seen across

This visual homogenization has led to cries for a toggle or “classic color” mode, allowing

Still, even critics of the aesthetic shift acknowledge the overall polish and

The remaster is available now for PC, PlayStation 5, and Xbox Series X/S, and includes

all the original expansions: *The Shivering Isles* and *Knights of the Nine*. Players can

purchase a standard edition or a Deluxe Edition, which adds a digital artbook,

And Finally… A Word to Our Influencer Overlords

Last, but by no means least, let’s take a moment to address the sudden flood of content

that has hit YouTube and TikTok like a Daedric invasion: the influencer “guides.” You

sprawling, carefully crafted RPG was to bypass the journey and jump straight to being

To all the content creators out there breathlessly milking the algorithm with titles like

This isn’t a battle royale. Oblivion was never designed to be "speedrun to glory while

proclaiming how to cheese the AI, dupe a Daedric artifact before the tutorial ends, or

Experiment with spellcrafting. Get lost in a cave, die to a mudcrab, and come back

So yes, dear influencer, we’re not here for your tutorials on how to break the system.

We’re here to lose ourselves in it. Save the shortcuts for the games that don’t mind

a landmark RPG. While not without flaws, it successfully reintroduces the magic of

Cyrodiil to a new generation of players and provides veteran fans with a compelling

For anyone steeped in the charm of pixel art, MIDI music, and the warm hum of a

CRT, retro computing isn't just a nostalgic pastime – it's a revival of an era. Whether

you grew up booting games from a floppy disk or you're discovering vintage

software for the first time,

the ability to emulate

old IBM-compatible PCs

is an invaluable asset.

Emulators allow us to

recreate the computing

experiences of the 1980s

and 1990s with

remarkable accuracy, breathing

new life into classic games, demos, and operating

systems.

Over the years, a range of PC emulators

has emerged, each with its own strengths

and quirks. Among them, 86Box and

PCem are well-known names in the retro

computing scene – but they are just the

beginning. Emulators such as Bochs,

QEMU, VirtualBox, and VMware also

bring an interesting

flavour to the table,

particularly when

considered from the

perspective of retro

gaming.

In this article, we

explore these tools with a focus on how well they serve the retro gaming enthusiast. As a

side note for all retro fans out there, we chose the hard way. Our daily machine runs a Linux

distro, and we decided to relive all our nostalgic outbursts using this beast. So be prepared:

at certain points in this article, we’ll mention that we had to compile things ourselves. But

since not everyone lives on a penguin farm, we also tested the emulators under Windows to

see how they behave there.

86BOX: THE POWERHOUSE OF RETRO PC EMULATION

86Box is often hailed as the gold standard for detailed PC emulation. Originally forked from

PCem, it has since surpassed its predecessor in both accuracy and breadth of hardware

support. For the retro gamer seeking an authentic experience – matching original BIOS

behaviour, precise ISA/VLB/PCI bus interactions, and even some obscure hardware

configurations – 86Box delivers.

It's particularly invaluable for running early PC games that depend on exact timing, rare

graphics chipsets, or proprietary sound cards. Though it demands significant CPU resources

and setup time, the payoff is unparalleled fidelity to the original hardware.

Installation Guide for 86Box
Download 86Box: Visit the official 86Box website to download the latest stable version.

Choose the version suitable for your operating system (Windows/Linux).

Install the Emulator: Head to https://86box.net, and for Windows, download the ZIP file and

extract it to a folder of your choice. For Linux, precompiled AppImage binaries are

sometimes available for easier access.

Obtain BIOS Files: 86Box requires authentic BIOS files for emulation. These can be legally

sourced from old PC hardware or trusted third-party repositories. Follow the instructions on

the 86Box website to locate and place the BIOS files in the appropriate folder (usually

named roms, located in the same directory as the executable). You may need to have git

installed if you want to stay up to date with the latest ROM developments.

Setup: On first launch, configure your emulated PC by selecting the CPU, motherboard, and

peripherals. You'll need to tailor the configuration to suit the games or software you intend

to run.

Install the OS: Depending on your use case, you’ll likely need to install an operating system –

just as on a real machine. So, dig out those dusty DOS diskettes (or download a version from

your favourite online archive) and get ready to roll.

What We Like About 86Box
One standout feature is its extensive hardware emulation library. Unlike many emulators

that offer only a limited set of parts, 86Box recreates the hardware landscape of the 1980s

and 1990s in painstaking detail. Whether you’re emulating an 8088-based XT, a 486DX2, or a

late '90s Pentium MMX machine, 86Box handles it – and does it well.

Even more impressively, it automatically selects compatible combinations of motherboards,

CPUs, chipsets, and peripherals. This means you don’t need to be a vintage hardware expert

to build a system that makes sense for the era. Support for a broad array of sound cards

https://86box.net/

(Sound Blaster, Gravis Ultrasound, etc.), network adapters, and SCSI controllers rounds out

an enthusiast’s dream.

What Could Be
Better
The main limitation is its

"one machine at a time"

workflow. While you can

technically run multiple

instances, 86Box is

fundamentally built to

emulate one system per

session. If you’re juggling

multiple retro projects –

say, installing Windows 95

on one system while testing

a DOS game on another –

you’ll need to manage

configurations manually or

set up separate

installations.

Bonus: 86Box
Manager Makes Life Easier
To ease this pain point, there's a companion tool called 86Box Manager. It provides a

graphical front-end for creating, launching, and managing a library of virtual machines –

each with its own configuration, disks, and settings. This turns 86Box into something akin to

a vintage virtual machine farm, where every setup can be customised and preserved.

However, the Linux version of 86Box Manager, while promising, remains buggy and

occasionally unstable. As it’s a .NET application ported to Linux, some quirks remain. For

now, Linux users may be better off configuring things manually or sticking with the core

emulator directly – at least until the GUI becomes more robust.

PCEM: THE LEGACY OF ACCURATE PC EMULATION

PCem, once the gold standard of cycle-accurate PC emulation, still holds its own, especially

for late DOS or early Windows 95-era gaming. Though no longer under active development,

it supports CPUs up to the Pentium MMX and includes 3Dfx Voodoo support – essential for

mid-to-late '90s gaming.

86Box Emulates a Wide Range of Machines. Some more Exotic than the others…

It's also lighter on system resources than 86Box and can run many classic titles more

smoothly, making it a pragmatic option for those who value performance without needing

exhaustive hardware accuracy.

Installation Guide for PCem
Download PCem: Visit https://pcem-emulator.co.uk to

download the latest version. Install the Emulator: Extract

the ZIP archive to a folder of your choice. PCem doesn’t

use a traditional installer, though you may need to install

DirectX manually on Windows. Recent Linux users must

compile it from source.

Obtain BIOS Files: Like 86Box, PCem requires BIOS files.

These can be sourced from old hardware or located via

retro computing communities online.

Configuration: After launching PCem, select your desired

system configuration, install an OS, and get ready for

some trial-and-error fun – particularly if you choose an

exotic machine from 30 years ago matched with some

recent hardware. PCem supports floppy and hard drive

images. Mount your game and boot into DOS or Windows

to begin. It can’t mount directories as CD images, but you can create ISO images from

directories using tools on your host OS.

What We Like About PCem
PCem's optimised emulation engine makes it feel snappy and responsive, especially on

modern systems. This makes it ideal for demanding DOS and early Windows 95/98 games,

where smooth performance can make or break the experience.

Its model-based hardware selection also adds structure and historical flavour to system

setup. Users can recreate period-accurate builds with a sense of purpose, rather than

assembling random parts.

What We Really Don’t Like
The biggest downside is that PCem has been discontinued. No more updates, bug fixes, or

modern host support. The torch has largely passed to 86Box, which builds on PCem's

foundations.

Another issue is the lack of constraints on hardware combinations. It’s possible to select

setups that would never have worked in the real world – leading to confusing or broken

Too bad this Machine Manager was not lifted
over to 86Box

https://pcem-emulator.co.uk/

configurations. Newcomers may struggle without some understanding of vintage PC

architecture.

Our test App, UnrealGold Runs Pretty Smooth

BOCHS: ACCURACY AT A COST

Bochs takes a different route: sacrificing usability/speed for instruction-level accuracy. It's

the emulator for OS developers and researchers needing to simulate every instruction and

interrupt. For gaming, Bochs is generally believed to be too slow (but stay tuned for a

surprise), though academically fascinating to experiment with.

Getting Started with Bochs
Download Bochs: Get the latest version from bochs.sourceforge.io.

Install: Windows offers an installer. Linux requires compilation (be prepared for configure

lines like ./configure --enable-voodoo --enable-x86-64 --with-sdl2 and make). Hard disk

creation often needs command-line tools like bximage.

Configuration: Setup means manually editing the bochsrc file. Specify CPU, memory, and

more. Our handy boxout includes a bochsrc snippet for Voodoo magic. Some says it is not

ideal for gaming, but Bochs can run simple DOS games if configured carefully and if you

figure out how to mount a disk image after the system boots (hint: press the configure

button, there is the option for changing CDs).

What We Like About Bochs
Bochs takes a distinct philosophical approach compared to 86Box/PCem. Instead of

mimicking hardware chaos, Bochs simplifies: a single, configurable virtual machine. No

lengthy selection of motherboards or quirky ISA peripherals – configure a clean, abstracted

machine via a text file and run. It even supports 3Dfx! This minimalism is a strength, avoiding

real-world incompatibilities that 86Box/PCem expose for authenticity. Want MS-DOS 1.0 or

early Linux? No worries about graphics BIOS compatibility with sound chipsets There are just

a few ones to consider. Bochs is extremely stable and deterministic, a favourite in

academic/security circles for testing low-level components or CPU behaviour. One

appreciated feature: clipboard access, making pasting long commands easy.

We were impressed by the Banshee emulation speedwhile testing Unreal Gold. Mouse

cursor lag is terrible in the Windows GUI, but the game runs smoothly. A pleasant surprise.

What We Don’t Like About Bochs
But simplicity comes at a

steep price: user-

friendliness is minimal.

Bochs requires users to

write/maintain bochsrc

files by hand – a learning

curve feeling more like

programming than using

an emulator. Worse,

documentation is often

outdated/fragmented,

and official GUIs are

rudimentary if you can

compile them. Tasks

taking seconds in 86Box

– like mounting a CD-

ROM – involve manual

text edits, frustrating

over time. For

newcomers, Bochs feels

Pretty Pleasantly Surprised with the Emulated Banshee

like a time machine not just for the guest, but the emulator itself. A personal drawback: non-

English keyboards can be problematic. Wasting half an hour trying to type format c: with a

Norwegian layout highlighted this!

QEMU: VERSATILITY FOR THE ADVANCED USER

QEMU occupies a middle ground:

versatile, emulating/virtualising

systems across multiple

architectures. For retro PCs, it

supports basic x86 and runs

DOS/Win 9x reasonably fast,

especially the mouse cursor is

blazingly fast in the machine…

Yes Bochs, we’re looking at you.

However, it lacks the fine-tuned

hardware needed for accurate

graphics/sound in many classic

games. Still, for quickly testing

old OSes/software in a scriptable,

efficient environment, QEMU is

handy.

Getting Started with QEMU:
Download QEMU: Get the version for your OS from the official QEMU website:

https://www.qemu.org/download/ or from https://qemu.weilnetz.de/ if you use Windows…

Install: Download the installer on Windows. Linux users can install via package managers

(e.g., sudo apt install qemu) or choose the painful compilation of 8000 files.

Configuration: QEMU is command-line driven. Configure via specifying CPU, memory, and

disk image parameters. When done, install and boot the OS as on a standard machine, and

the games are accessible by mounting disk images with lengthy commands.

What We Like About QEMU
QEMU is the Swiss Army knife of emulation. While not focusing specifically on retro PCs,

QEMU's superpower is emulating staggering numbers of architectures (x86, PowerPC, ARM,

MIPS, SPARC, etc.). It's a cornerstone for developers, researchers, and security analysts

across systems. For retro PC fans, QEMU is capable for classic DOS/early Windows, especially

mimicking 386/486 machines. It suits building clean environments for legacy software, not

cycle-accurate niche chipset emulation.

The Graphica User Interface of qemu is actually a Command Line

https://www.qemu.org/download/
https://qemu.weilnetz.de/

What We Don’t Like About QEMU
Yet for all its power, QEMU isn't beginner-friendly. The steep curve stems from reliance on

long command lines with obscure flags/parameters. No built-in GUI exists; third-party front-

ends (AQEMU, QEMU Launcher) are often rough or lag feature support. This means getting

QEMU to cooperate feels like writing a shell script, even for simple tasks like installing DOS

or changing floppies. For many retro fans just wanting to play a game, this lack of user-

friendliness is a turnoff, especially when 86Box/PCem offer hardware menus and graphical

settings. Also, QEMU lacks viable graphics card emulation (no Voodoo magic!), hindering its

retro gaming potential. Cirrus cards weren't built for fast 3D!

VMWARE: SPEED, POLISH, AND A CORPORATE EDGE

VMware has long been a staple of professional virtualization, and it shows. With fast

emulation, polished user interfaces, and excellent integration with host hardware, VMware

offers a streamlined experience for running guest operating systems - provided those

systems fall within a certain compatibility range. Its ability to leverage the host’s resources

directly gives it a performance edge that makes even Windows XP feel snappy again. The

snapshot feature alone is a huge quality-of-life improvement for testing and tweaking.

Getting Started with VMware
Download VMWare: There have been some changes at VMWare recently, so finding a site

which works for downloading might be troublesome. Techspot has a recent installer, this is

the one we used.

Installing: After downloading (from a site which actually works) and installing VMware

Workstation (free for personal use), you simply create a new virtual machine by selecting

your guest OS and pointing to an installation ISO.

Configuring: The built-in wizard guides you through configuring virtual hardware like CPU,

RAM, disk, and network adapters, making it accessible even for those new to virtualization.

While installing modern OSes like Windows XP is usually smooth, setting up older systems

such as Windows 98 can require additional tweaking due to limited legacy hardware

support. Sadly we have failed on installing Windows 98, because we have a too fast machine,

however for those who want to dig deeper there is a fix at

https://github.com/JHRobotics/patcher9x.

What we like about VMWare
What we like about VMware is its sheer polish and speed. It’s one of the most performant

virtualisation environments out there, especially when running operating systems from the

Windows NT family onwards. It leverages the host machine’s hardware exceptionally well,

maybe too well as we have seen in our Windows 98 failure, which translates into fluid guest

https://github.com/JHRobotics/patcher9x

experiences and rapid disk I/O. Its user interface is modern, intuitive, and welcoming - the

kind of thing that makes you forget you’re even using a virtualisation tool. Features like

snapshots, shared folders, and drag-and-drop integration blur the line between host and

guest in a way that few emulators can rival.

What we do not like about VMWare
But what we don’t like is how clear it is that VMware was never designed for retro

computing. It exists in the enterprise space, and retro support is incidental at best.

Attempting to install Windows 98, for example, often leads to a speed issues (when using

newer, faster host machines), poor sound support, and the complete absence of any

meaningful graphics acceleration.

DOS works, technically, but you’re

unlikely to get the kind of fidelity a

retro enthusiast craves due to DOS

runs on a technological power

horse, lots of games did not

anticipate. Worse still, the product

has drifted behind login walls and

corporate licensing models, making

it harder for casual hobbyists to

simply pick up and use.

And a bonus:
VirtualBox
While VMware often takes the

spotlight, VirtualBox deserves

mention as another popular

virtualization platform that shares

many of the same strengths and weaknesses. Both VMware and VirtualBox excel in

delivering excellent performance for the operating systems they support by tapping into the

host machine’s hardware acceleration, resulting in near-native speeds that far outpace

traditional cycle-accurate emulators-especially on modern CPUs. Their polished, user-

friendly interfaces make it easy to create and manage virtual machines through simple point-

and-click workflows, eliminating the need for manual configuration files or scripting.

However, neither VMware nor VirtualBox were built with true legacy hardware emulation in

mind, and they struggle with older systems like Windows 95 or 98, where installation and

functionality often break down. Together, they make great general-purpose virtualization

tools but fall short when it comes to faithfully recreating vintage PC hardware.

CHOOSING THE RIGHT TOOL FOR THE RETRO JOB

With many emulation/virtualisation tools, choosing can be daunting. Some reproduce 90s

hardware quirks accurately (even slow CD access); others offer fast, convenient ways to run

old software. Choice depends entirely on your goals – DOS games, early Windows

experiments, or exploring esoteric hardware/software. Here's how they stack up:

For Accurate DOS Gaming: 86Box takes the crown. Incredibly accurate emulation of vintage

PCs and peripherals. Your 1990s time machine.

For OS Experiments and Surprising Speed: Bochs is ideal for peeking under the hood of

OSes. Deterministic and configurable for kernel testing... and provided surprising Unreal

Gold speed!

For Hardware Tinkering: PCem still holds up for assembling historically plausible (or

implausible!) PC configurations. Experiment with exotic setups.

For Later Windows/Linux Speed: VirtualBox and VMware are unbeatable for Windows 2000,

XP, or early Linux. Snappy, intuitive, great for productivity on slightly newer 'retro' systems.

The Versatile Powerhouse: QEMU is the power user's toolkit. Versatile, scriptable, cross-

platform, multi-architecture. If you don't mind the command line, it does almost anything.

Ultimately, retro computing emulation isn't just about the software – it's about the hardware

you didn't have to source, install, or troubleshoot. Anyone who has configured jumpers on a

physical Sound Blaster or hunted Voodoo drivers knows the charm included pain. Emulators

like 86Box let you

relive those days –

quirks and all –

without opening a

case or sourcing

unreliable vintage

parts. Others, like

Bochs, strip away the

hardware struggle,

letting you dive into

OS internals or

debugging without

worrying about

chipset compatibility.

Even The Winner Has a Surprise reserved for us from Time to Time

RETRO EMULATOR COMPARISON

Emulator Best For Retro

hardware

coverage

GUI

Friendliness

Performance Notes

86Box DOS/Win9x

gaming &

nostalgia

★★★★★ ★★★★☆ ★★★☆☆ Best hardware

coverage,

great with

86Box

Manager

PCem Hardware

experiments

★★★★☆

★★★★☆ ★★★☆☆ Discontinued,

still very

usable

Bochs OS internals,

academic use

★★☆☆☆ ★☆☆☆☆ ★★★★☆ Configuration-

heavy, very

precise, slow

mouse

QEMU Multiplatform

and scripting

★★☆☆☆ ★★☆☆☆ ★★★★☆ Requires lot of

command line

knowledge

VirtualBox Later

Windows

(2000/XP)

★★☆☆☆ ★★★★★ ★★★★★ Can’t run

Win98 easily,

very user

friendly

VMware Workstation-

class retro use

★★☆☆☆ ★★★★★ ★★★★★ Commercial

product,

limited retro

flexibility, fails

to install

Win98

What you lose in tactile authenticity, you gain in convenience and experimentation. Build

impossible systems, tweak legacy software without fearing capacitor death on your ancient

486. Whether installing Windows 3.1 for the umpteenth time or finishing that DOS RPG,

your tool shapes the experience – friction and freedom alike. No perfect way exists, and

that's precisely what makes it a rewarding journey.

 BEASTS IN BAGS: TOP RETRO RIGS YOU CAN RUN WITH 86BOX

As a closing note, we present a list of high-end PC setups from 1989 to 1997, capturing what

was considered cutting-edge for each year. These weren’t budget builds, they’re what the

most performance-hungry enthusiasts, developers, or early adopters might have had on

their desks. From the blazing-fast (for the time!) 486DX systems to early Pentium II

workstations with 3D acceleration, these builds reflect the pinnacle of consumer hardware

from each era. All configurations are fully buildable in 86Box, with period-correct CPUs,

motherboards, graphics, sound cards, and more. Whether you want to run Windows 3.1,

tinker with DOS games, or fire up early 3D titles, these setups will get you there—faithfully

and accurately.

1989 - i386DX/i486 – DataExpert EXP4349 (MR)
This machine will require you to have manually input the type of the hard disk in the

BIOS under type 47, so it’s better to take note. Also, don’t forget the explicit IDE

controller, if you work with IDE hard disks.

• CPU: Intel i486DX – 50 MHz, the first 486, introduced April 1989

• Memory: 4 to 8 MB RAM (very high for the time)

• Graphics: VGA 640x480 256 colors (TSENG Labs ET4000AX)

• Sound: Creative Labs Sound Blaster (16-bit audio)

1994 – The rise of Pentium: Dell
Dimension XPS P90
In 1994, the hardware landscape advanced significantly with the release of Intel’s Pentium

processors into the mainstream, offering improved performance and floating-point

capabilities over the earlier 486 chips. For this build we chose one of the classical Dell

machines, the Dimension XPS P90. With a fantastic 90Mhz Pentium.

• CPU: Intel Pentium 90 MHz

• Memory: 16 MB RAM

• Graphics: S3 Vision 964 – Diamond Stealth 64

• Sound: Sound Blaster AWE32

TSENG Labs ET4000AX

S3 Vision 964 – Diamond Stealth 64

TSENG Labs ET4000AX

1996 – Voodoo Entered the Building: VIA FP3
1996 was a great year for the computing industry. Intel just released their fastest CPU, the

intel Pentium MMX running at a whopping 200Mhz, and a new kid on the block just entered

the scene: 3dfx, with their magical 3D card, the Voodoo 1. No more pixelated monster

hunting in Quake, using the archaic 320x200, now we can scale up the pixels to 640x480 too

(or 800x600 if you have a beefier card with 6MB).

The selection for this category of machines in

86Box is huge, so we have just picked one at

random. The machine has a FIC PA-2012

motherboard, with an AGP port too, so you can

experiment at your convenience.

• CPU: Pentium MMX 200 MHz

• Memory: 64 MB RAM

• Graphics: S3 Virge (Diamond Stealth 3D-

2000) paired with a 3Dfx Voodoo 1

• Sound: Sound Blaster AWE64

At this juncture, we shall refrain from presenting additional configurations beyond the year

1997. While it is entirely possible to emulate later high-end systems, we must admit that

86Box begins to strain the limits of our current hardware when tasked with more demanding

CPUs, and we have encountered some instability—particularly with Voodoo3-based graphics

emulation. As such, we’ve opted to remain within the bounds of what our machine can

handle comfortably and reliably.

Of course, if you are fortunate enough to be equipped with a more powerful system, we

wholeheartedly encourage you to explore further. There is great joy to be found in

assembling your own ideal late-90s virtual workstation, and we would be most delighted to

hear from readers who have crafted their own period-authentic builds. Do feel free to send

along your favourite configurations; we may even feature them in a future piece.

As for the imagery accompanying this article, it has been respectfully sourced from

community treasures such as DOSDays, Wikipedia, and the invaluable VGA Museum. These

are shared here with the utmost admiration for the original archivists. We make no claim of

ownership, nor do we derive any financial benefit from their use. They are presented solely

for educational and nostalgic appreciation, and no harm is intended.

The clicking card: Voodoo1 Righteous Orchid

Playing

Whether you crawled through a snowbank to plant dynamite in Commandos,

fought with three guards in Robin Hood, or freed the sheriff in Desperados you

remember it. Not because of pixels or polygons. But because you earned it.

In the late 1990s and early 2000s, before “stealth” became synonymous with AAA sandbox epics or rogue-

like indie crawlers, a trio of games emerged that defined and refined a now-niche but once-thriving genre:

the isometric real-time tactics stealth game. Each game took a different thematic route - Commandos:

Behind Enemy Lines led us into the heart of World War II, Desperados: Wanted Dead or Alive saddled up in

the American Wild West, and Robin Hood: The Legend of Sherwood lured us into the green-glowing myth of

medieval England.

All three were linked by design DNA - squad-based gameplay, individual characters with unique abilities,

unforgiving enemies, and environments that rewarded patience, creativity, and precision. And yet, each one

forged its own identity through atmosphere, mechanics, and tone.

More than twenty years later, these games still spark nostalgia and admiration in equal measure. Here’s a

look at how they compare - not just in gameplay, but in legacy.

Robin Hood: The Legend of

Sherwood (2002)

While technically the last in the series, historically it can

be considered the first, so we think that starting from the

medieval times, and advancing toward more modern

settings can be in our benefit, to fully comprehend the

timeline. Released in 2002 by Spellbound Entertainment

and published by Microids, Robin Hood: The Legend of

Sherwood is a beautifully crafted real-time tactics, which

brought players into the myth and folklore of medieval

England - a refreshing change that fused historical

romanticism with tight stealth-based gameplay.

Gameplay and Mechanics

Set in the iconic world of Sherwood Forest,

Nottingham Castle, and surrounding medieval

villages, the game delivers a meticulously stylized

and tactical experience that’s as rich in

atmosphere as it is in gameplay depth.

Much like all the other games in this review, the

game also centers around a small team of

specialized characters, each with unique

abilities, and places them in sprawling, semi-open

maps filled with patrolling enemies, strategic

opportunities, and multiple paths to success.

The core gameplay revolves around stealth,

timing, and using each character’s strengths in

combination. Robin Hood leans heavily into non-

lethal gameplay - promoting knocking out and

tying up enemies over outright killing them, or

just simply bribing them with a purse full of gold.

Or so they think.

The cast of playable characters is diverse,

colorful, and incomplete, because we want to

convince you to go and play the game:

Robin Hood: Agile and

quick, he can knock enemies

unconscious, climb, use a

bow for silent ranged attacks,

and blend into crowds. He also leads most

missions.

Little John: Strong but

slower, he can carry two

bodies at once, knock out foes

with a punch, and smash down certain

doors or gates.

“

Friar Tuck: A unique utility character who

can heal others, carry wine to lure or drug

guards, and even persuade people to help

the cause.

Will Scarlet: Fast and light on

his feet, he’s perfect for

scouting and picking pockets.

Much the Miller’s Son: A nimble thief

and rogue with the ability to distract

enemies and climb buildings.

Maid Marian: A stealth-

focused spy who can disguise

herself as a noblewoman to

walk through enemy territory freely.

What distinguishes Robin Hood is how fluid and

cinematic the gameplay feels. Characters interact

with the environment in dynamic ways - climbing

walls, hiding in haystacks, sneaking through

windows, and using everyday objects like plates

or stools to cause distractions, and also having

conversations with in-game characters adds valor

to the game.

Robin Hood is very forgiving and fluid.

Characters don’t die instantly, and enemies are

slightly more lenient, making the game more

accessible while still retaining tension and it is

entirely possible that one main character can have

a simultaneous sword fight with three different

guards at the same time, while other guards keep

patrolling their path happily.

Level Design and Mission

Structure

There are over 30 missions, set across

diverse and beautifully illustrated

environments: the lush greenery of

Sherwood Forest, the muddy streets

of Nottingham, fortified castles, and

even river barges. Each mission has

its own narrative context, often

connected to a larger campaign to

undermine the tyranny of the Sheriff

of Nottingham and ultimately rescue

King Richard.

Mission objectives range from

ambushes and rescues to full-scale

sabotage and infiltration, and many

maps can be approached in multiple

ways. You can go in with brute force,

using Little John to clear a path, or

play ghost-like, knocking out guards and hiding

bodies without triggering an alarm.

A day-night cycle adds further variation. Some

missions take place under the cover of darkness,

with limited guard vision, while others occur

during the day, requiring more clever use of

disguise and distraction.

Controls and Interface

The interface is elegant and medieval, but the

author of these lines found the amount of greenery

to be a bit of an excess, and very point-and-click

based, optimized for tactical control. Each

character has a context-sensitive menu of actions,

and the game supports queuing commands -

allowing players to plan out complex sequences

(like sneaking, knocking out, and tying up) with a

few clicks.

Leaving Three Dead Bodies in the Courtyard is Definitely Not Affecting

the other Guards

One standout feature is the "tactics"

system, which lets players record a series of

movements and commands to be executed

later - essentially a primitive macro system.

It’s incredibly useful for synchronized

multi-character actions, like ambushing

multiple guards at once.

Graphics and Audio

Visually, Robin Hood is a gorgeous 2D isometric

game with hand-painted environments and fluid

sprite animations. The attention to detail is

remarkable: trees sway gently, villages bustle with

life, and interiors are richly textured.

Characters move with lifelike motion, and combat

is animated with flair. Watching Robin knock a

guard out with a staff, sling him over his

shoulder, and dump him into a haystack - all

in one seamless flow - never gets old.

The soundtrack is lush and medieval, filled

with flutes, lutes, and orchestral strings that

evoke the romanticism of Robin Hood’s

legend. Sound effects are charming -

swords clash with a satisfying clang, guards

mutter as they patrol, and birdsong fills the

forest air.

Voice acting is light and often tongue-in-cheek,

perfectly suiting the game’s tone. Robin Hood’s

quips and the exaggerated English accents

reinforce the folk-hero vibe without descending

into parody.

AI and Challenge

The enemy AI is relatively intelligent, with focus

on relative. Guards react to noises, investigate

missing comrades, and sound alarms when

suspicious activity is noticed, but the game

doesn’t lean into unforgiving precision. Players

have some leeway, and quick reactions can often

save a mission from total failure.

This balance between challenge and forgiveness

makes the game a tactical title that still respects

player creativity.

There are multiple solutions to most problems,

and the freedom to explore and experiment is one

of its strongest aspects.

On a negative note, however, I have found it a bit

disheartening that while I was fighting with three

guards in the courtyard the other ones happily

went on with their patrol algorithms, undisturbed

by the cries for help of their fellow fallen

comrades.

Narrative and Presentation

The game blends historical legend and

lighthearted storytelling, taking the myth of

Robin Hood seriously enough to feel grounded but

with plenty of playful charm. Cutscenes are brief

but well-voiced, often bookending missions with

hand-drawn comic-style illustrations that bring the

legend to life and providing fun representation of

in-game characters.

While not a deeply story-driven game, its episodic

structure and recurring characters give it a

cohesive feel. Over time, the player truly feels like

they are building a rebellion - sabotaging the

Sheriff’s plans, rescuing allies, and gathering

support for King Richard’s return.

Beautiful Castles in Medieval Britain... What Else can We wish for?

Desperados: Wanted Dead or Alive

(2001)

Our second game in this series was released in 2001 by

Spellbound Entertainment and published by Infogrames,

Desperados: Wanted Dead or Alive is the second in both

senses, both historically, and by release time. The game set in

the American Wild West, and arguably one of the finest

genre successors to the formula introduced by Commandos a

few years earlier.

Gameplay and Mechanics

At its core, Desperados is about orchestrating

complex stealth operations using a team of six

diverse characters, each with unique abilities and

personalities. You’re given total control of a squad

as they undertake missions involving sabotage,

infiltration, rescue, and ambushes, often against

overwhelming odds.

Here’s the breakdown of your gang of outlaws:

John Cooper: The central hero -

fast, agile, and deadly with his

throwing knife. Can silently

eliminate enemies, climb obstacles, and

dual-wield pistols in shootouts.

Doc McCoy: The team’s doctor and sniper.

He can knock out enemies with gas, heal

allies, throw vials of poison gas, and fire a

long-range scoped pistol.

Kate O’Hara: A master of

distraction. She can flirt to lure

guards, blind enemies with a

mirror, or throw perfume to disorient them

- but she’s unarmed.

Sam Williams: Explosives expert and

demolitions man. He can toss dynamite,

plant traps, and use a long-range shotgun.

He’s loud, messy, and fun.

Pablo Sánchez: A strongman with a bear

trap, the ability to carry multiple bodies,

and a fondness for brute force. He also

commands his pet ferret, “Generál.”

Mia Yung: A late-game addition

with a blowpipe, healing potions,

and a trained monkey named “Mr.

Leone” who can steal items and cause

chaos.

The gameplay emphasizes stealth,

synchronization, and timing. You can distract a

guard with Kate while sneaking up with Cooper

for a quick kill. You can plant dynamite in a patrol

path, then pull the trigger at just the right moment.

You can clear an entire map without firing a single

shot - or cause mayhem if things go loud.

One of the most brilliant features is the "Quick

Action" system - players can pre-program up to

five actions per character and trigger them

simultaneously, allowing for synchronized

takedowns and ambushes. This adds a layer of

real-time tactics that’s as satisfying as it is

strategic.

Level Design and Mission Structure

The game features 25 missions, set across a

beautifully realized Wild West backdrop: dusty

frontier towns, desert canyons, speeding trains,

military forts, and even Mexican haciendas. Each

mission is tightly designed, with intricate patrol

routes, interactive objects (e.g., horses, barrels,

wells), and multiple approaches.

Each level is massive in scale but carefully

structured, encouraging scouting and observation.

Players must often split up the team and manage

parallel objectives while coordinating across large

distances, thus seemingly increasing the difficulty

of the level.

Environmental interaction is a highlight - knock

enemies off ledges, drop crates on their heads, use

animals to spook guards, or trigger water towers

to cause distractions.

The game invites improvisation and creative

problem-solving in a way that feels dynamic and

immersive.

Controls and Interface

The interface is intuitive and functional, especially

for a game of its complexity. Each character has a

unique command bar with drag-and-drop abilities

or hotkeys. Right-clicking brings up radial menus

for fast action access.

The Quick Save/Quick Load system is essential

and thankfully generous, given how failure can

come fast and unexpectedly.

The Quick Action (Plan Mode) is a true standout,

allowing players to choreograph simultaneous

movements and execute them with one button - a

brilliant solution for real-time multitasking.

Graphics and Audio

Even by today’s standards, Desperados holds up

beautifully, especially if you happen to have a

smaller screen that todays’ curved HD monsters.

The isometric 2D environments are hand-

drawn with incredible attention to detail - from

bustling saloons and stables to train depots and

mines. Dynamic shadows, day-night effects, and

bustling environments add realism to every scene.

Animations are smooth and cinematic. Character

actions - whether it’s Cooper flicking his knife or

Kate sashaying to distract a guard - are full of

personality and polish.

The audio design is equally rich. Gunfire echoes

across the canyon, boots clink on wooden boards,

and horses whinny in the distance. The

soundtrack is a mix of spaghetti-western guitar

twangs, saloon piano, and orchestral flair - very

much in the style of Ennio Morricone.

Voice acting is top-tier for its time, with snappy

dialogue, western slang, and distinct personalities

that bring each character to life. There’s real

chemistry between the cast, with banter and

cutscenes that deepen the story.

AI and Challenge

Enemy AI is alert and aggressive, but not

unfair. Guards patrol with set routines,

investigate disturbances, and respond

intelligently to distractions. Sound plays

a key role - running, gunfire, or noise-

based tools can draw attention or mislead

enemies.

You’re almost always outnumbered and

outgunned. Stealth is not optional - it’s

the core of the experience. However, the

learning curve is smoother than

Commandos, and the ability to “pause-

plan-execute” means trial and error feels

more like learning than punishment.

There’s real satisfaction in dissecting

each level like a puzzle - clearing

zones silently, setting traps, and finally

executing your escape or ambush flawlessly.

Thankfully the AI is much cleverer than the Sheriff...

Narrative and Presentation

The story is a surprisingly robust Western

adventure. You play as John Cooper, a bounty

hunter tracking down the mysterious train-robbing

bandit known as El Diablo. As the story unfolds,

Cooper assembles a ragtag team of misfits, each

with their own motivations, as they uncover a

conspiracy that spans the border between the U.S.

and Mexico.

Cutscenes, both hand-drawn and engine-rendered,

flesh out the narrative with humor, suspense, and

solid pacing. While it doesn’t take itself too

seriously, the game strikes a great balance

between grit and levity.

Legacy and Influence

Desperados: Wanted Dead or Alive was a critical

and commercial success in Europe and developed

a strong cult following globally. It stands as one

of the best real-time tactics games of its era and is

often considered the Western-themed counterpart

to Commandos.

Its influence is long-lasting. It spawned sequels

(Desperados 2, Helldorado), and after nearly two

decades, the series was revived in 2020 with

Desperados III by Mimimi Games - a modern

masterpiece that paid tribute to everything the

original did right.

Commandos: Behind Enemy Lines (1998)

When Commandos: Behind Enemy Lines launched in 1998, it carved a niche for itself in the gaming

landscape with a mix of real-time tactics, puzzle-like level design, and stealth gameplay set against the gritty

backdrop of World War II. Developed by Spanish studio Pyro Studios and published by Eidos Interactive,

it was a bold and cerebral title that defied many trends of the era - a time dominated by fast-paced action

shooters and traditional RTS titles.

Gameplay and Mechanics

At its core, Commandos isn't about large armies or

base-building - it's about a small, elite team of six

operatives, each with a highly specialized skill set.

Players are given complete control over this unit

in a series of meticulously crafted missions, each

taking place deep in enemy territory. Several of

the missions are reminiscent of novels or

Hollywood movies.

Each character has a distinct function in the game:

Green Beret (Jack “Butcher” O’Hara):

Strong, agile, and perfect for climbing

walls with knife kills. He can also carry

bodies and hide them.

Sniper (Sir Francis T. Woolridge):

Equipped with a sniper rifle and limited

ammunition, he’s your precision tool for

taking out distant threats.

Marine (James “Fins” Blackwood):

Operates in aquatic environments; can

dive, swim, and use a dinghy or scuba

gear. He also wields a harpoon gun.

Sapper (Thomas “Fireman”

Hancock): Your explosives

expert. Planting dynamite,

remote bombs, and laying traps

are his specialties.

Driver (Sid Perkins): Handles vehicles

and heavy weapons. He is critical in

missions involving escape or sabotage.

Spy (René Duchamp): Arguably

the most fascinating character. He

can disguise himself in enemy

uniforms, move freely, and assassinate

quietly using a syringe.

The interplay between these characters is the heart

of the game. No single operative can complete a

mission alone. Success demands synchronized use

of their abilities - a sort of real-time chess match

with the player as the tactician.

Level Design and Mission Structure

The game contains 20 missions, each set in

detailed and varied environments - from the icy

fjords of Norway to sunbaked North African

outposts and fortified bunkers in France. These

missions are not procedurally generated; every

enemy patrol, searchlight, minefield, and vehicle

is deliberately placed to create a tense, almost

puzzle-like experience, and levels toward the end

become a real pixel hunting for players with

nerves of steel.

What’s striking is how

Pyro Studios managed to

evoke a powerful sense

of place and atmosphere

despite the game's isometric 2D engine. Soldiers

bark orders in German, dogs patrol key areas,

sirens scream if you're spotted, and alarm systems

can alert the entire map - forcing players to reload

and rethink their plan.

There’s no room for error. Enemies have cone-

shaped vision fields, and they’ll react to sounds,

footprints in the snow, or corpses. A single alert

can quickly snowball into

failure. The only way to

survive is to observe enemy

patterns, coordinate the

squad, and strike with

surgical precision.

User Interface and Controls

While it may feel dated

today, the interface in

1998 was quite intuitive

for its genre. Each

character had their own

icon-based action menu,

and players could issue

commands via hotkeys or right-click interactions.

That said, the lack of a mid-

mission save system at

launch was one of the game's

biggest frustrations.

Missions often took upward

of 30–60 minutes to

complete, and a single misclick or a patrolling

soldier you overlooked could end everything.

Later patches added a save feature, which was a

relief for many players.

Graphics and Audio

Visually, the game was

stunning for its time.

The isometric

backgrounds were hand-

painted and richly

detailed, evoking the

aesthetic of military

technical maps crossed

with a graphic novel.

The visual clarity

allowed players to spot

important items,

distinguish terrain types,

and plan escape routes.

The soundtrack was minimal

and mostly ambient,

punctuated by sound effects

- the bark of a dog, the clank

of a tank, or the quick mutter

of a German soldier. Voice

lines for the Commandos

were short and often

humorous, adding a layer of

personality that offset the

intense gameplay (“Yes sir!”,

“Got it!”, “Leave it to me!”).

AI and Challenge Level

The unforgiving enemy AI is relatively primitive

by modern standards, but caused endless hours of

frustration while coining the term “pixel hunting”

amongst us, but its predictability worked in the

I wouldn't stand the if I were You...

... told ya...

game’s favor. Guards followed strict patrol

patterns, and their reactions were consistent -

meaning players could plan with confidence. The

challenge wasn’t about outsmarting evolving AI,

but about solving the level’s intricately designed

logic.

This gave the game a feel reminiscent of a tactical

puzzle box: with enough observation and clever

planning, every mission could be beaten without a

single shot fired - or in utter chaos, depending on

your playstyle.

Cultural Impact and Legacy

Commandos: Behind Enemy Lines sold over

900,000 copies in its first year and was

particularly popular in Europe, where its cerebral

design and historical theme struck a chord with

strategy fans, except Germany where due to the

graphical representation of various symbols was

banned.

Even decades later, the original Commandos

remains a cult classic, often cited as one of the

most innovative and challenging strategy games

of the late '90s. It also laid the groundwork for its

sequels, especially Commandos 2, which would

refine and expand on its core mechanics.

Commandos: Behind Enemy Lines is a product of

another era - a time when games didn’t hold your

hand, when patience and precision were rewarded,

and when a 2D game could still make your palms

sweat with tension. Its difficulty curve is steep, its

learning curve steeper, but the sense of

satisfaction after completing a flawless mission is

unmatched.

For those who love meticulous strategy, high-

stakes stealth, and the atmosphere of WWII,

Commandos isn’t just a game - it’s a rite of

passage.

Gameplay vs. Gameplay: Pixel Hunting vs. Creative Flexibility

Commandos was the progenitor. It wasn’t just tactical -

it was surgical. Every mission was a pressure cooker of

patrols, gun nests, timing, and enemy sight cones.

Mistakes were punished brutally. Guards had hawk-like

vision, bodies had to be hidden immediately, and

combat was rarely an option. It was a game of pure

logic under pressure - almost like playing chess at

gunpoint.

Each of the six commandos had rigid roles: the Green

Beret could climb and stab, the Spy could disguise, the

Driver could handle vehicles. There was almost always

one right way to do things - and the challenge came

from discovering and executing it flawlessly.

Commandos was not just about stealth - it was about being smarter than the map.

Robin Hood took the Commandos formula and softened it - making it more forgiving and more fluid.

Characters could knock enemies out and tie them up, and failure wasn’t instant death. Maps were more

open-ended. Guards were persistent but not omniscient. There was no combat in the traditional sense - only

distraction, timing, and clever evasion.

Robin and his band were versatile: Marian could pass as a noblewoman, Friar Tuck could bribe or drug

people, and Robin himself was the archetypal trickster hero - climbing vines, sneaking past guards, and

vanishing into the forest. The emphasis on non-lethality and mischief gave it a lighter tone and more

options for improvisation.

Robin Hood was still tactical - but it embraced the fantasy of being a legendary outlaw, not a

military asset.

Desperados is often seen as the perfect balance between the punishing rigidity of Commandos and the

playful flexibility of Robin Hood. It had intense stealth and patrol mechanics, but also robust AI

interaction, multiple solutions, and tools for synchronizing complex actions via its Quick Action (Plan

Mode) system.

Its cast of six was wildly diverse: Cooper was the knife-throwing hero, McCoy the tranquilizer-slinging

sniper, Kate the distraction expert, and so on. Maps were sprawling, reactive, and full of Wild West flair -

horses, trains, saloons, mines.

Where Commandos had only one or two viable paths, Desperados offered a sandbox of tactics, inviting

players to experiment with traps, timed distractions, and synchronized takedowns.

Desperados was the most cinematic, most expressive, and arguably the most fun of the three -

without sacrificing challenge.

Tone and Theme

Commandos: War as chess. Stark, silent, serious. You were behind enemy lines, outnumbered, and likely to

die. There was no music during gameplay - just the sound of your own nerves and the bark of discovery.

Robin Hood: Lighthearted but grounded in its myth. The soundtrack hummed with medieval flutes and

tambourines, and every mission felt like a storybook caper. You were not just fighting tyranny - you were

inspiring the people.

Desperados: Somewhere in between. Stylish, slick, and cinematic. It didn’t shy from gunfights, but it wasn’t

grimdark either. Think The Good, the Bad and the Clever. There was a real sense of camaraderie among

your outlaws, with character-driven cutscenes and a sense of momentum in the campaign.

Legacy and Influence

Commandos inspired an entire subgenre. It made stealth intellectual. Its brutal difficulty and perfectionist

design are still studied in game design circles. Though later entries added 3D and lessened the difficulty,

none hit the sweet spot like the original.

Robin Hood is often the forgotten gem, loved by fans for its charm and its unique tone. It showed that the

genre could be non-violent, mythological, and even family-friendly - without losing its tactical core.

Desperados lives on strongest today. It received a stellar sequel in 2020 (Desperados III) from Mimimi

Games - the modern champions of the real-time tactics genre (Shadow Tactics, Shadow Gambit). It has a

community, modding tools, and enduring replay value. It proved that this genre wasn’t just historical - it was

cinematic.

Each of these games mastered a different aspect of tactical stealth:

• Commandos was the discipline - harsh, brilliant, and brutally rewarding.

• Robin Hood was the fantasy - romantic, clever, and mischievously fun.

• Desperados was the style - fluid, fast, and full of flair.

Together, they represent a trinity of design ideals that game developers are still trying to recapture. And for

players who love tension, planning, and the thrill of the perfect execution - they are not relics. They are

roadmaps.

Thankfully in 2025 all three games are available on Steam, so go on, grab them as fast as your nostalgia

kicks in. And of course, Happy Sneaking!

THE

DIG

We let our Gen-Z contributor to go wild with one of the old classic games, and then kindly asked

him to write a review. Does this old classic still hold up to the expectations of the latest

generation?

The Dig is a unique entry in the LucasArts

adventure game library - less comedic than

Monkey Island, more known than Day of the

Tentacle. Developed with input from Steven

Spielberg (originally written as an episode

for his TV-series,

Amazing Stories), the

game offers a unique

mix of classic point-

and-click gameplay and

an interesting science-

fiction story.

You play as

Commander Boston

Low, an astronaut

leading a team of astronauts sent to divert an

asteroid on a collision course with Earth.

Things quickly escalate when the asteroid

turns out to be hollow, revealing a way into

an ancient, alien world. Low is stranded

with two other astronauts: one of them being

this German fellow called Ludger Brink,

who is not only an astronaut, but also an

archeologist, and Maggie Robbins, a

journalist and linguist. In addition to these

three there are also two other characters:

Ken Borden, and Cora Miles, but these play

almost no significant role in the story and

barely have a reason to exist. In this alien

world Low, Brink, and Robbins must

discover the secrets and technology of an

ancient alien civilization and find a way

home.

By modern standards,

The Dig seems like a

standard point-and-

click puzzle game, but

the variation of puzzles

is comparable to many

modern games, even

though some of the

puzzles make very little

sense and are practically impossible to

complete without a guide, the large variety

of puzzles and mechanics is still one of the

games’ greatest strengths.

For a mid-90s title, the visuals of The Dig

hold up extremely well when compared to

newer games with a similar pixelated

artstyle. The immense variety in landscapes

and backgrounds is both one of the games

greatest strengths, but also create a small but

annoying issue that persists throughout the

“

entire game: The characters walk

ridiculously slowly, and when they have to

move through dozens,

or even hundreds of the

large and varied areas

the time spent waiting

for them to move from

one screen to another is

almost more ample than

the time spent actually

doing puzzles and

interacting with the game.

Another minor issue with the otherwise

splendid graphics is that the contrast

between critical items you have to pick up

and the background is sometimes non-

existent. There is a part where you have to

pick up a brown metal

plate off the floor, the

only problem being

that the entire floor on

which the brown plate

is, is also brown. The

game creates a lot of

situations where highly

important items blend

completely into the

background, forcing you to painstakingly

move your mouse across every single pixel

on the screen hoping there is something

somewhere.

But ignoring the aforementioned issues, the

graphics of The Dig are some of the best of

its time, and still hold up surprisingly well to

modern standards.

Another sublime component

is the audio and sound

design, all of the music in

the game perfectly

complements the scene they

are played behind, and

further enhance the rich and

interesting story. The voice

acting is also surprisingly

good, and far surpasses many modern

games.

At release, The Dig was bombarded with

mixed reviews. Some praised its ambition

and storytelling, while others criticized its

overly serious tone and

sometimes questionably

designed puzzles. It was

never as beloved as other

LucasArts titles, possibly

because it strayed so far

from their usual formula.

However, it has since

regained a lot of the

popularity and praise it at

first lacked. It still remains an at times

strange and mildly frustrating experience,

but its interesting and unique narrative, and

still amazing graphics complimented by the

(mostly) well designed puzzles, make this

underrated game a very different experience

from other LucasArts entries, and point-and-

click games in general.

As per 2025, THE DIG is available on Steam together with a great selection other classical

LucasArts games. Go fetch them as long as you can.

Because what could be better, on a rainy Tuesday,

than slipping beneath the world,

where shadows stir and secrets stay -

and the Abyss calls your soul to play?"

Released in March 1992 by Blue Sky Productions (later known as Looking

Glass Technologies), Ultima Underworld: The Stygian Abyss is not merely a

game, but a foundational pillar of immersive simulation and 3D RPG design.

Published by Origin Systems and set in the renowned Ultima universe created

by Richard Garriott (Lord British), this title broke conventions and redefined

player expectations. It was so far ahead of its time, it felt like it invented new

possibilities in game design.

The development of Ultima

Underworld was led by Lead

Designer Paul Neurath, with

Warren Spector (known for his

work on Deus Ex, System Shock,

and Thief)

serving as

Producer.

Technical

masterminds

like Doug

Church and

Dan Schmidt

were

instrumental in its creation. The

game featured a custom-built, true

first-person, texture-mapped 3D

graphics engine, a full year before

the release of Doom. At a time when

most RPGs were tile-based, turn-

based, and viewed from a top-down

perspective (such as Wizardry or

Ultima VI), Underworld offered a

fully navigable, real-time 3D world

with complete player control over

the camera. It was a

true first-person RPG

simulator, predating

influential titles like

System Shock, Thief,

and even The Elder

Scrolls: Arena.

Imagine trying to sell

a game concept like

this in the early 90s – "So, it's like

Wizardry, but you're inside the

screen, and you can look up and

down! And everything's all…

textured!" Revolutionary, indeed.

“

You assume the role of The Avatar,

falsely accused of kidnapping a

baron's daughter. Your punishment

is to be cast into the Stygian Abyss,

an ancient and decaying dungeon

built upon the remnants of a failed

utopia. Within the

Abyss, you

encounter lost

human outcasts

and various

peaceful and

hostile races,

including

lizardmen,

goblins, and trolls. The Abyss also

holds ancient relics and ruins, and

is threatened by a growing demonic

force that imperils the world above.

Your mission evolves from mere

survival to one of discovery,

diplomacy, puzzle-solving, and

ultimately confronting a world-

ending evil known as The Slasher of

Veils. This is far more than a simple

dungeon crawl; it's a

societal exploration,

a mystery, and a

narrative

masterpiece. You're

not just hacking and

slashing; you're

navigating a

subterranean soap

opera with potentially apocalyptic

consequences!

The fact that in 1992 the game came

with a fully 3D Texture-Mapped

World was amazing for the player.

The game allowed players to move,

jump, look up and down, swim, and

even fly. It incorporated the use of

light sources,

dynamic shadows,

and navigable

uneven terrain. It

was the first

game ever to

feature a real-

time first-person

3D RPG engine. This was mind-

blowing at the time. Players could

finally experience a dungeon with

actual verticality, no longer

confined to a flat, top-down grid.

Falling down a hole finally felt like

falling down a hole!

The items in the

game could be used

in logical and

creative ways, such

as throwing bones

onto pressure plates,

mixing reagents, or

Whoever you are, get out of my Dreams

The First real Door to Almost Nowhere

utilizing levers. The game also

included physics elements like

gravity, momentum, and swimming.

Puzzles often had multiple

solutions, emphasizing player

agency. Forget using a key to open a

door; in Underworld, you might

need to stack boxes, use a

telekinesis spell, or perhaps bribe a

nearby goblin with a moldy cheese

to get through.

Players could

engage in

conversations

with NPCs using a

parser interface,

allowing for full

sentences.

Negotiation,

bartering, and

empathy were all viable options.

Factions within the game responded

dynamically to your behavior,

encouraging interaction before

combat. You could actually talk

your way out of a fight with a group

of goblins, perhaps by convincing

them you had a shinier rock

collection elsewhere. Just

remember,

actions have

consequences,

and double-

crossing a

faction might

lead to some

awkward (and

dangerous)

future encounters.

The game featured a rune-based

spellcasting system where players

discovered and combined syllables

to form spells. Experimentation was

encouraged, allowing players to

potentially create new magical

effects through true spell research.

Forget memorizing spell slots; here,

you were a linguistic wizard,

combining runes like "Flam," "Corp,"

and "In" to create

fiery, flesh-affecting

inward bursts of

magical goodness (or

something equally

chaotic). For players

who have not had

the chance to own a

copy of the original

game book we add a list of all the

runes that you can concoct up

spells with.

Ultima Underworld was one of the

earliest RPGs to effectively use

ambient sound cues, dynamic

music, and environmental audio.

Players could hear a waterfall before

seeing it,

footsteps

would echo

realistically,

and audio

cues

heightened

the sense of

impending

danger. This

Bones ...

More Bones... And a Real Treasure: A Rune-Bag

wasn't just background noise; it was

an integral part of the immersion,

making the Stygian Abyss feel like a

truly living (and often terrifying)

place. Hearing the skittering of a

large creature just around the

corner with no visual confirmation?

Pure, unadulterated dread.

Upon start of a new game, players

could choose from several fantasy

archetypes, including the classical

ones, as Fighter, Bard, Mage, and

Paladin or the

more exotic,

like Shepherd.

Various skills

were available,

such as

Appraise,

Repair,

Casting,

Swimming,

and

Negotiation.

Each skill choice

significantly impacted the player's

options, encouraging diverse

playstyles. Want to be a master

haggler who can sweet-talk their

way through any situation? Go for

it. Prefer to be a hulking warrior

who solves problems with a well-

placed swing of their sword? Also

an option. The game spanned eight

massive levels, each with a unique

theme. Quests varied widely,

ranging from faction diplomacy and

language deciphering (including the

surprisingly useful ability to learn

the Lizardman tongue) to musical

puzzles, artifact recovery, and

mystical trials. You might find

yourself acting as a diplomat

between warring factions one

moment and

trying to decipher

ancient runes the

next. And yes, you

literally learn to

understand the

Lizardmen, which

is both useful and

slightly bizarre.

The inventory

system was tactile,

with items

represented in a

literal bag and managed through a

draggable interface. The game

utilized a bartering system instead

of traditional money, where players

traded items like torches for cheese

or gems for armor. Limited

inventory space and encumbrance

added a survival element to the

gameplay. Hoarding every shiny

object you find becomes a strategic

challenge, and deciding whether

that extra loaf of bread is worth

leaving behind that slightly-less-

rusty breastplate is a genuine

dilemma.

Let There Be ... Wendy. RetroWendy

Ultima Underworld is widely

considered the spiritual ancestor of

numerous influential titles,

including System Shock, Thief, Deus

Ex, and The Elder Scrolls. It also

directly inspired elements in games

like BioShock, Half-Life's immersive

environments, Dishonored's

systemic gameplay, and Prey's world

interactivity.

The game was universally acclaimed

by critics upon its release and

frequently appeared on "Best Games

of All Time" lists for years. As Game

Developer Magazine aptly put it,

"What Ultima Underworld did in

1992, most games didn't even dream

of until the 2000s". It wasn't just a

step forward; it was a giant leap for

immersive gaming kind.

The Stygian Abyss is filled with

secrets, including hidden rooms,

secret factions, and unexpected

dialogue trees. The game even

allows for a pacifist playthrough,

where you can complete the game

without engaging in combat. There

are also alternate endings based on

player choices. Delving into the

game reveals secret lore about the

Underworld civilization, the

Talorids, and the shadowy

manipulation of the Guardian. The

sheer depth of the world and the

various paths you can take make

each playthrough a unique

experience. Can you truly find all

the hidden cheese wheels?

Ultima Underworld, bundled with

Ultima Underworld II: Labyrinth of

Worlds, is available on GOG.com.

Community patches and tools like

Underworld Exporter allow for

playing the game in modern high

resolutions. There are also spiritual

successors, such as Arx Fatalis and

Underworld Ascendant. And more

recently, Monomyth seems to gain

some traction. So, if you missed out

on this gem the first time around,

or if your floppy drives are

gathering dust, there are legitimate

ways to experience this classic

today.

A number of dedicated online

communities and archives offer rich

content related to Ultima

Underworld, including The Ultima

Codex Underworld Hub, Ultima

Dragons Internet Chapter (UDIC),

and discussions on platforms such

as r/Ultima on Reddit—each

preserving and celebrating the

legacy of this groundbreaking RPG.

https://underworld.ultimacodex.com/
https://underworld.ultimacodex.com/
https://www.facebook.com/groups/ultimadragons/
https://www.facebook.com/groups/ultimadragons/
https://www.reddit.com/r/ultima/

Ultima Underworld remains a

landmark in game design,

representing a perfect blend of

story, systems, and player freedom.

It respects player intelligence,

encouraging experimentation,

immersion, and creativity. It is, in

essence, the genesis of the

immersive sim genre. Playing

Ultima Underworld today is more

than just retro-gaming; it's like

stepping into a living museum of

game innovation. It's a reminder

that groundbreaking design can

come from unexpected places, even

a digital abyss filled with goblins

and talking lizards.

Ultima Underworld: The Stygian

Abyss is not just a game; it's a

miracle of software engineering, a

design beacon, and a deep, soulful

adventure that continues to impress

even when compared to modern

titles. Whether you are a fan of

dungeon crawlers, system tinkerers,

narrative lovers, or a historian of

game design, this descent into the

abyss is an experience you will

never forget. Enter the Abyss, and

emerge transformed (and perhaps

with a newfound appreciation for

bartering).

What once was buried now rises again.” That’s not just a

tagline—it’s a mission statement. When Diablo II

originally released in 2000, it reshaped the ARPG genre.

More than 20 years later, Diablo II: Resurrected aims to reintroduce this

classic to a modern audience while respecting its core identity.

When Diablo II first stormed onto the scene in 2000, it redefined what an

action role-playing game could be. Its blend of dark fantasy atmosphere,

addictive loot mechanics, and deep character customization made it a genre-

defining title. Over two decades later, Diablo II: Resurrected emerges not as a

r eboot, but as a respectful homage—aiming to modernize the experience

while preserving its soul.

But how do these two versions truly compare? Let’s dive into every detail:

from graphics and gameplay to modding and multiplayer.

A Visual Resurrection

From Gothic Sprites to 4K Hellscapes

One of the most immediately striking differences between Diablo II and

Diablo II: Resurrected is the graphical overhaul. The original ran at a modest

640x480 resolution, built on a 2D sprite-based engine. At the time, it was

gorgeous - brooding cathedrals, windswept deserts, and monster designs that

burned into your memory. But even with the Lord of Destruction expansion,

the resolutions were capped at 800x600, and the assets were pre-rendered and

static.

The Old

The new

“

Resurrected, however, brings the world of Sanctuary to life in full 3D with

support for resolutions up to 4K. Characters, environments, and monsters have

all been meticulously rebuilt with modern rendering techniques—complete

with dynamic lighting, ambient occlusion, shadows, and even HDR support.

The result is stunning without being intrusive. The original grid-based layouts

and hitboxes remain unchanged, ensuring gameplay feels identical. And for

purists? A single button press lets you instantly toggle back to the classic look,

offering a nostalgic glimpse at how far the game has come.

Visual Toggle Feature: With a single keystroke (default: G), you can instantly

swap between legacy and modern visuals—perfect for appreciating the visual

fidelity without forgetting your roots.

Gameplay

Untouched by Time

At its core, Diablo II: Resurrected plays exactly like the original. The

simulation engine underneath - the one handling combat, loot rolls,

pathfinding, and skill behavior - is untouched. Every mechanic, every exploit,

every frame of animation is preserved, however it became possible to modify

certain aspects of the game, such as Item Drop Spacing to match the new or

the old tastes.

You still get:

• Seven character classes: Amazon, Sorceress, Necromancer, Paladin,

Barbarian, Druid, and Assassin

• Runewords, Horadric Cube recipes, mercenaries, PvP dueling, and boss

farming

• A brutal and rewarding difficulty curve through Normal, Nightmare,

and Hell modes

That said, optional post-launch content—such as Terror Zones and Sunder

Charms—spices up endgame content for those seeking new challenges.

The Sound of Hell

Sounds even better with 5.1 extra channels

While the original’s audio design by Matt Uelmen, haunting music, ambient

effects, and the clang of swords - was praised for its moodiness, it was limited

to stereo output. Resurrected remasters that iconic soundscape for 7.1

surround sound, offering enhanced immersion without altering the core

compositions. It even includes a legacy mode for those who prefer the original

audio mix.

Controller, Support, and Accessibility

The controllers work especially good on consoles

With Resurrected, Diablo II breaks free from its mouse-and-keyboard roots.

Full controller support has been added, with an intuitive interface tailored for

console play. The game is now available on PlayStation, Xbox, and Nintendo

Switch, opening the gates of Hell to a broader audience.

Accessibility options have also been expanded, including scalable text,

colorblind-friendly UI settings, and

an updated control scheme designed

to be more comfortable for modern

players.

A surprising feature creeped in to

Diablo II: Resurrected. It supports

importing your original Diablo II

save files (as long as they were

created as local/offline characters).

The steps for these can be quite

tricky, but with a bit of guidance we

think it will not represent a big

problem.

Firstly, You just have to copy your

old save folder over to

c:\Users\<YOURUSER>\Saved

Games\Diablo II Resurrected\ and

this should sort out all the details.

You even can upgrade the characters

to the expansion if required.

From this point, just start the game,

and either it works out of the box, or

So that's how a 30-year-old Necromancer looks like

not. Since we fell into the second category, we had to do some

troubleshooting after the strange new messages, like “Could not join the

game” or “Cannot access file”.

If you get strange error messages, like could not join game, a small trick or

two for you in order to sort out these annoyances:

1. Make sure the save files (*.d2s) are NOT read-only. Some backup

systems set this flag. This fixed our character upgrading, which

strangely could not rewrite the files after the upgrade. Makes sense

somehow.

2. If step one failed, make sure the file names have a lowercase ending:

.d2s not .D2S. It seems somewhere in the game the lowercase ending is

hardcoded.

3. When picking to join a game, pick the highest possible level, ie. the one

you ended up with 20 years ago. We tried to pick the easiest one for our

Nightmare character but we failed.

These tricks have helped the author of these lines to regain control of their

level 33 Necromancer to effectively go and hack monsters all around again.

Or even better raise skeletons. A lots of skeletons to run around you like

crazy.

The old

The new

Multiplayer: From LAN Parties to Global
Ladders

You still can play with your mate in the other room

Back in 2000, Diablo II supported TCP/IP multiplayer and open Battle.net

play—along with all the exploits, bots, and dupes those systems invited.

Resurrected opts for modern Battle.net integration, with stricter anti-cheat

protections and region-wide ladder seasons.

Gone is local multiplayer via LAN or TCP/IP, which some old-school fans

lament. But in its place is a smoother, more secure online experience that

supports cloud saves and cross-progression between platforms (though not

cross-play).

Modding: Then and Now

Because that’s how you make your game your own

Modding kept Diablo II alive for years after its prime—mods like Median XL,

Eastern Sun, and Path of Diablo pushed the engine to its limits.

The original relied on binary hacks and .mpq file editing. In Resurrected,

Blizzard introduced a modding framework that supports override-friendly .csv

and data files. While not as open as full source access, it’s a major

improvement.

Some classic mods won’t work without reengineering, but the foundation for

modern modding is solid and growing.

Final Verdict: Which Diablo Should You
Play?

This should not be a question now

If you're a veteran returning to Sanctuary, Resurrected feels like coming

home—with a fresh coat of paint, more storage space, and no LAN cables in

sight. If you're a new player, this is hands down the best way to experience

one of the greatest ARPGs ever made.

Most importantly, Diablo II: Resurrected succeeds where many remasters fail:

it modernizes without sterilizing. Every frame of its haunting, addictive

brilliance has been honored.

I think, with these words we can conclude, that unless you have a retro

machine, Resurrected lives up to the moods of the players, so it’s time to jump

in it without regrets that you will out something from the original. You won’t.

Not even your old characters you played with 20 years ago.

System Requirements

Then vs. Now

When Diablo II launched in 2000, its requirements were modest—even by

that era’s standards. A Pentium II CPU, 64 MB of RAM, and a basic DirectX-

compatible GPU were enough to descend into Hell.

Fast forward to Diablo II: Resurrected, and the bar is much higher. With its

3D graphics and modern rendering pipeline, the remaster requires a quad-core

CPU, 8 GB of RAM, and at least a GTX 660 / Radeon HD 7850 GPU. An

SSD with at least 30GB free is strongly recommended for smoother load times

and zone transitions.

While the original ran comfortably on late-90s hardware, Resurrected requires

a mid-range gaming PC or current-gen console. That said, it’s still very

accessible by today’s standards and runs well even on modest modern setups.

A quick guide to Overclocking and
Underclocking a CPU

Because what can be more optimal than running a CPU slower or faster than their

intended speed.

Modern (read: from the 90’s onwards) central processing units (CPUs) are designed with a careful balance of performance

capabilities, energy efficiency considerations, and thermal limitations that dictate their operational boundaries. However, many

advanced users and retro enthusiasts seek to go beyond these factory settings, often attempting to modify a CPU's operating

parameters to either extract additional performance through overclocking or to minimize power consumption through underclocking.

While both practices involve altering the CPU's fundamental behavior they are driven by fundamentally different objectives and

carry distinct sets of implications for system stability and longevity. This article provides a comprehensive and detailed exploration

of both overclocking and underclocking, delving into not only the practical methods involved but also the underlying electrical and

physical principles that govern their effects.

Understanding Clock Speed

In a modern computer system, the clock signal

that drives the CPU and other subsystems

originates from a crystal oscillator, typically

a quartz crystal soldered onto the

motherboard. This oscillator is a piezoelectric

component that vibrates at a highly stable

frequency when voltage is applied, most

commonly producing a base frequency such as

25 MHz or 100 MHz. However, this raw

signal is not directly used by the CPU; instead,

it is fed into a dedicated clock generator

chip—such as the IDT 9-series (Integrated

Device Technology), ICS clock generators, or

other similar timing ICs. This chip often

includes a Phase-Locked Loop (PLL) circuit,

which takes the base crystal frequency and

multiplies it to generate the higher frequencies

required by the CPU and other high-speed

components. For instance, a 100 MHz base

clock (commonly known as the BCLK on Intel

systems) can be multiplied by an internal

multiplier—controlled by the CPU or

firmware—to achieve operational frequencies

in the gigahertz range, such as 3.6 GHz or more.

The Intel Platform Controller Hub (PCH) or

AMD Fusion Controller Hub (FCH), as part

of the motherboard chipset, also plays a role in

distributing and synchronizing these clock

signals across various system buses like PCIe,

SATA, USB, and DRAM. These components

ensure that all parts of the system operate in

harmony with precise timing. Importantly,

although CPUs like Intel’s Core i7 or AMD

Ryzen appear to manage their own dynamic

frequencies via technologies like Intel Turbo

Boost or AMD Precision Boost, the

foundational timing still depends on the

external clock source generated by the

motherboard’s oscillator and clock generator

circuitry.

This clock signal lies at the core of a CPU's

operation, which is a consistent and rhythmic

square wave of voltage: the signal acts as the

metronome that dictates the pace at which the

processor executes instructions; each rise and

fall of the wave marks a clock cycle, a discrete

unit of time during which the CPU performs its

operations. Clock speed is measured in Hertz

(Hz), representing the number of cycles per

second, and in modern CPUs, this frequency is

typically in the gigahertz (GHz) range, where

1 GHz is equivalent to 1 billion cycles per

second.

Within each clock cycle, the CPU can perform

a small, discrete unit of work. This work might

involve a variety of fundamental operations,

such as fetching an instruction from memory,

decoding that instruction to understand what

needs to be done, executing the instruction

(performing the calculation or data

manipulation), or writing the result of that

operation back to memory. In essence, the

“

clock cycle provides the timing framework

within which these fundamental CPU

operations occur.

The clock speed is directly related to the CPU's

potential processing capacity. A higher clock

speed means that more clock cycles occur in a

given second, and since each cycle allows the

CPU to perform a piece of work, a faster clock

theoretically translates to the ability to process

more instructions and complete more tasks in

the same amount of time.

Overclocking: Boosting Performance

Overclocking is the practice of configuring a

CPU to operate at a clock speed that exceeds

its factory-specified or rated operating

frequency. This deliberate pushing of the CPU

beyond its intended limits is done with the goal

of achieving higher performance. For example,

a processor that is designed to run at a stock

speed of 3.0 GHz might be overclocked to run

at 3.6 GHz or even higher speeds, depending

on the CPU's capabilities and the system's

cooling capacity.

The motivations for overclocking are varied

and often driven by the desire to maximize

performance in demanding applications:

• Enhanced performance in

demanding applications like

games, simulations, and

rendering: One of the

primary reasons

individuals overclock their

CPUs is to gain a

noticeable improvement

in performance in

computationally

intensive tasks. In video

games, overclocking

can lead to higher

frame rates and smoother

gameplay, providing a more

immersive and responsive experience.

Similarly, in scientific simulations or 3D

rendering, overclocking can slightly reduce

processing times, allowing for faster

completion of complex calculations or the

generation of intricate visual content. This

pursuit of increased performance is

particularly relevant for users who require

maximum processing power for their work

or entertainment.

• Maximizing the potential of hardware, as

some CPUs can operate beyond their

rated specifications: Manufacturers often

set conservative clock speed ratings for

CPUs to ensure stability and reliability

across a wide range of operating conditions

and system configurations. However, many

CPUs possess a degree of inherent

performance headroom and can operate

stably at speeds exceeding their official

specifications. Overclocking allows

users to tap into this extra potential,

effectively getting more performance

out of the hardware they already

own. This can be a cost-

effective way to boost

performance without the need

to purchase a new, more

expensive CPU.

• Experimentation and

the pursuit of performance

by us, technology

enthusiasts: Overclocking

is also a popular activity

among technology enthusiasts

and hobbyists who enjoy pushing

the boundaries of hardware and

exploring the limits of CPU performance.

For these individuals, overclocking is not

just about achieving a specific performance

gain but also about the challenge and

satisfaction of fine-tuning their systems and

optimizing performance. It's a way to learn

about the intricacies of computer hardware

and to engage in a community of like-

minded individuals.

Overclocking is typically achieved by

carefully adjusting several key parameters

within the computer system's BIOS/UEFI

firmware or through specialized software

utilities:

• Base Clock (BCLK): The base clock is the

fundamental timing frequency that serves as

the foundation for many subsystems within

the computer, including the CPU, memory,

and interconnects. It acts as a reference

frequency from which other operating

speeds are derived. Increasing the BCLK

raises the operating frequency of these

interconnected components. However, it's

crucial to adjust the BCLK cautiously, as it

can impact the stability of the entire system.

• Multiplier: The CPU multiplier is a factor

that is applied to the base clock to determine

the final operating frequency of the CPU

cores. The CPU frequency is calculated by

multiplying the base clock by the CPU

multiplier (CPU Frequency = BCLK x

Multiplier). For example, if the base clock

is 100 MHz and the multiplier is 30, the

CPU frequency will be 3.0 GHz. Adjusting

the multiplier is a common and relatively

straightforward way to overclock the CPU,

as it primarily affects the CPU's speed

without directly altering the speeds of other

system components.

• CPU Core Voltage (Vcore): The CPU core

voltage (Vcore) is the amount of electrical

voltage supplied to the CPU cores.

Increasing the Vcore is often necessary

when overclocking to provide the CPU with

the additional power it needs to operate

stably at higher frequencies. However,

increasing the Vcore also leads to increased

heat generation, which necessitates

adequate cooling to prevent damage to the

CPU.

Overclocking is generally performed through

two primary methods:

• BIOS/UEFI Interface: The Basic

Input/Output System (BIOS) or its modern

replacement, the Unified Extensible

Firmware Interface (UEFI), is the firmware

embedded on the motherboard that controls

the computer's basic hardware functions.

The BIOS/UEFI interface provides access

to a range of settings, including those

related to CPU clock speeds and voltages,

allowing users to manually adjust these

parameters to achieve their desired

overclock. Overclocking through the

BIOS/UEFI offers a high degree of control

but requires a good understanding of the

system's hardware and settings.

• Software Utilities: Several software

utilities are specifically designed to

facilitate overclocking within the operating

system environment. These utilities, such as

Intel XTU (Extreme Tuning Utility) and

AMD Ryzen Master, provide a user-

friendly interface for monitoring system

parameters and making real-time

adjustments to CPU frequencies and

voltages for modern processors that have

unlocked these features.

But I hear you, dear reader: In my retro

machine I have an old motherboard, with basic

BIOS … and I still want to overclock. You're

raising a very interesting and historically

significant point about overclocking, because

well, in the end this is a magazine for retro

computing! It's true that early overclocking

often involved methods beyond simple BIOS

adjustments. Here's a more detailed

explanation of how overclocking was achieved

directly on the motherboard, especially in the

days when BIOS options were limited or non-

existent for this purpose.

Underclocking: Enhancing Efficiency

Underclocking is the opposite of overclocking;

it is the process of deliberately reducing the

CPU's operating frequency below its default or

factory-specified value. Instead of pursuing

maximum performance, underclocking

prioritizes energy efficiency, reduced heat

generation, and increased system longevity, to

not to mention that games, such as some of the

Ultima series, whose running speed was

directly affected by the speed of the CPU they

were running on could be enjoyed in their

natural environment, even if one had a newer

computer they were programmed on.

The benefits of underclocking include:

• Lower power consumption:

One of the most

significant advantages

of underclocking is a

reduction in the

CPU's power

consumption. As

discussed earlier,

power consumption

is directly related to

the CPU's

operating

frequency and

voltage. By lowering the

frequency, the CPU requires

less power to operate, leading to

energy savings. This is particularly

important in battery-powered devices like

laptops, where reducing power

consumption can significantly extend

battery life.

• Reduced heat output: Lower power

consumption directly translates to reduced

heat generation. The less power the CPU

consumes, the less heat it dissipates. This

can be beneficial in various situations, such

as when building a quiet computer system

or when operating in environments with

limited cooling capacity. Reduced heat

output can also contribute to increased

system stability and longevity by

minimizing thermal stress on components.

• Extended battery life (especially for

laptops): In portable devices like laptops,

underclocking is a crucial technique for

maximizing battery life. By reducing the

CPU's power consumption, underclocking

allows the battery to last significantly

longer, enabling users to work or play for

extended periods without needing to

recharge. This is particularly valuable for

users who rely on their laptops for

mobile productivity or

entertainment.

• Increased longevity

and stability: Operating a

CPU at lower frequencies

and voltages can

contribute to increased

system longevity and

stability. Reduced

heat and power

consumption lessen the

stress on the CPU and

other components,

potentially extending their

lifespan. Additionally,

underclocking can improve

system stability, especially in situations

where the system is prone to overheating or

instability at its default settings.

Underclocking is closely related to another

technique called undervolting, which involves

reducing the CPU's core voltage. Since power

consumption is quadratically related to voltage,

even small reductions in Vcore can lead to

substantial power savings and reduced heat

generation. In many cases, underclocking is

combined with undervolting to achieve

optimal energy efficiency and thermal

performance.

Early Motherboard-Level Overclocking Techniques

In the early days of PC overclocking, before

BIOS interfaces became sophisticated and

user-friendly, enthusiasts had to rely on hands-

on, hardware-based modifications to push their

systems beyond factory-rated specifications.

Unlike today’s software-assisted overclocking

tools, early methods required a deep

familiarity with motherboard schematics,

physical dexterity, and a healthy dose of

experimentation. This often meant physically

altering the motherboard itself, with tools like

tweezers, soldering irons, and a steady hand.

Let’s take a closer look at some of the most

common techniques used by early

overclockers:

• Jumper Adjustments: Many

motherboards from the late 80s to early

2000s used jumper blocks to configure

system settings such as the Front Side Bus

(FSB) speed, CPU multiplier, and voltage.

These jumpers—tiny plastic-covered metal

bridges—connected specific pairs of pins

on the board. By moving the jumpers to

different positions according to the

motherboard manual, users could select

predefined speed settings. For instance,

increasing the FSB from 66 MHz to 100

MHz could yield a significant performance

gain. In more adventurous cases, users

would choose undocumented jumper

settings to push the CPU into unsupported

frequency ranges, hoping the system would

still POST (Power-On Self-Test)

successfully. This method required close

attention to documentation, trial and error,

and a willingness to risk system instability

or failure.

• DIP Switches: Some motherboards

replaced jumpers with DIP (Dual In-line

Package) switches—small toggles that

could be flipped ON or OFF to configure

similar options. DIP switches allowed for

slightly easier configuration changes, but

they too required detailed reference charts,

typically printed in the motherboard

manual or silkscreened onto the PCB.

These switches controlled settings such as

CPU multiplier ratios and FSB speeds, and

experimenting with different switch

positions became a rite of passage for early

PC hobbyists. Misconfigurations could

result in a non-booting system or

unpredictable behavior.

• Clock Generator Modifications: For more

advanced users, modifying the clock

generator circuitry itself was an option.

The clock generator is responsible for

producing the reference frequency for the

entire system. By altering the components

around this chip—such as soldering

additional resistors or capacitors—users

could manipulate the output frequency.

This kind of hardware hacking was not for

the faint of heart, as it often voided

warranties and could lead to permanent

hardware damage. Nonetheless, for those

with the skill, it opened the door to

frequencies far beyond what the

motherboard officially supported.

• Voltage Modifications ("VMods"):

Sometimes, achieving stable overclocks

required more than just a higher

frequency—it demanded additional

voltage. When BIOS settings didn’t allow

for voltage adjustments, overclockers

would manually modify the power delivery

circuits on the motherboard. These VMods

involved soldering resistors or

potentiometers directly onto voltage

regulation components to raise the Vcore.

While this could stabilize higher CPU

speeds, it also significantly increased heat

output and the risk of damaging the CPU.

VMods were considered one of the most

dangerous and advanced techniques in the

early overclocker’s toolkit.

To illustrate how hands-on these processes

were, let’s take a look at the Soyo SY-5SSM

motherboard (imagined below) a classic

example from the late 1990s. The manual (as

can be seen in the screenshot) for this board

featured detailed diagrams showing the

location and configuration of jumpers

responsible for selecting the CPU frequency

and multiplier. Setting up a new processor

meant consulting these pages, identifying your

CPU model, and carefully configuring the

jumpers with a small plastic tool or tweezers.

For the adventurous, deviating from the

official settings allowed for minor overclocks

- enough to squeeze out a few extra megahertz

for better performance in DOS games or early

Windows applications. This tactile, trial-and-

error process was both frustrating and deeply

satisfying, and it laid the foundation for the

modern overclocking culture we know today.

Modern CPU Features and Their Impact on Clocking

Modern CPUs incorporate several advanced

features that can significantly influence

overclocking and underclocking:

• Dynamic Frequency Scaling: Most

contemporary CPUs, such as those with

Intel's Turbo Boost technology or AMD's

Precision Boost, employ dynamic

frequency scaling. This technology allows

the CPU to automatically and dynamically

adjust its frequency and voltage based on

the current workload, thermal conditions,

and power limits. When the workload is

high, the CPU can boost its frequency to

provide increased performance, and when

the workload is low, it can reduce its

frequency to save power. Dynamic

frequency scaling adds complexity to

manual overclocking, as the user may need

to disable or fine-tune these automatic

mechanisms to achieve a stable and

predictable overclock.

• Voltage Regulators (VRMs): CPUs

receive their power from Voltage Regulator

Modules (VRMs) located on the

motherboard. VRMs are responsible for

converting the motherboard's input voltage

to the precise voltage levels required by the

CPU. They also play a crucial role in

smoothing out voltage fluctuations and

providing a stable power supply to the CPU.

The Evolution to BIOS and Software Overclocking

As motherboards and BIOS became more

sophisticated, overclocking gradually shifted

away from these hardware-based methods. The

BIOS started to include more comprehensive

options for adjusting CPU frequencies and

voltages, making overclocking more

accessible and less risky. Software utilities

further simplified the process by allowing

users to overclock from within the operating

system.

As a real-world example, let’s take the BIOS

of the fantastic motherboard Epox EP-8KRAI

which has the following page dedicated to fine

tune the system performance. The support

from this motherboard toward overclocking is

phenomenal (considering its age).

The first step is to specify in System

Performance is whether we want the general

settings, or one that allows us to select different

performance profiles. "Standard" indicates the

default settings. Overclocking would typically

involve moving away from this standard

setting, often by manually configuring the

individual options below. Moving from

"Standard" to "Expert" (or similar terms like

"Performance" or "Manual" depending what

you have on your system) typically unlocks

more advanced settings and applies a profile

that is optimized for performance, often

involving changes that facilitate or represent

an overclock.

The entries under CPU Timing, ROMSIP

Table and DRAM Command Rate are related

to memory (RAM) timings. Tighter timings

(lower numbers) generally lead to better

memory performance. When overclocking,

you might adjust these settings to improve

memory speed and stability, although overly

aggressive timings can cause instability. For

example, "Fast" and "Ultra" indicate more

aggressive (tighter) timings for CPU and

potentially system-level operations compared

to "Normal". Tighter timings can improve

performance but require more stability and

often higher voltages, especially when

combined with higher frequencies.

The value specified at Current FSB

Frequency (for now 200 MHz) is the Front

Side Bus Frequency, which is a key component

of the overall CPU speed, particularly on older

architectures. The CPU speed is often

calculated as FSB Frequency multiplied by the

CPU Ratio. Increasing the FSB is a common

way to overclock the CPU and also affects the

speed of other components like the RAM.

Changin it for example to 100, would be a

major difference because the FSB frequency

would significantly be lower in this

configuration. On older systems, increasing

the FSB was a primary method of overclocking

the CPU and memory. A lower FSB here

suggests the system is relying more on the

CPU multiplier to achieve speed.

The Current DRAM Frequency (for now 166

MHz) shows the current operating speed of

your RAM. The DRAM frequency is often

linked to the FSB frequency through a

multiplier or divider. Increasing the DRAM

frequency can improve system performance,

especially in memory-intensive tasks.

The default setting from DRAM Clock is By

SPD (Serial Presence Detect), which is

information stored on the RAM modules that

defines their standard operating speeds and

timings. "By SPD" means the system is

automatically configuring the RAM based on

this information. For overclocking, you often

need to manually set the DRAM frequency and

timings instead of relying on SPD to push the

RAM beyond its standard specifications. If for

example we could modify the DRAM

frequency to a lower configuration, which

should be consistent with the lower FSB (as

memory speed is often linked to FSB). For

example, if the DRAM clock is manually set to

133 MHz instead of "By SPD", indicating

manual control over memory speed, even

though it's a lower frequency than would be

provided by default, which might be paired

with very tight manual timings to compensate

for the lower frequency, it would simply

reflects a system where memory speed isn't

being pushed as hard as the CPU, and this

might lead to a lower performance system,

than the default settings.

The Auto Detect PCI Clk relates to the PCI

bus clock speed. It's usually best left enabled

unless you encounter specific compatibility

issues.

Interesting is the Spread Spectrum setting,

which is a technique used to reduce

electromagnetic interference (EMI) by slightly

varying the clock frequencies. When

overclocking, it's typically disabled because it

can sometimes introduce minor instability at

high frequencies. Disabling it provides a more

stable clock signal. Enabling Spread Spectrum

slightly varies the clock signal to reduce EMI.

While harmless in standard operation, it can

sometimes introduce minor instability at very

high frequencies when overclocking. It's

generally recommended to disable it for

maximum overclocking stability. Having it

enabled in an "Expert" performance profile

could be somewhat counter-intuitive from a

stability-focused overclocking perspective.

The CPU Clock field shows the calculated

CPU speed. It appears to be indicating that the

CPU clock is derived from the FSB (200 MHz)

multiplied by an automatic ratio.

The CPU Ratio should already be familiar to

us: this is the multiplier that, when combined

with the FSB, determines the final CPU clock

speed. If the CPU has an unlocked multiplier,

you can manually increase this ratio to

overclock the CPU without changing the FSB.

"[Auto]" means the system is automatically

setting the ratio, likely to the CPU's default or

maximum turbo speed. Overclocking a CPU

with an unlocked multiplier involves

increasing this value. Setting the CPU ratio for

example to 20, and the CPU clock to 100

would clearly show the CPU speed is

calculated as 100 MHz (FSB) multiplied by a

ratio of 20, resulting in a 2000 MHz (2 GHz)

CPU speed, thus achieving the same 200 MHz

FSB as with an "Auto" ratio.

The next part of the BIOS is at a much more

technical level, and it involves in the scary

sounding step of modifying the voltage of the

system.

Vcore Default Voltage [1.650 V], Current

Voltage [1.700 V] and Adjust Voltage

[+0.050 V] all play their part in providing the

CPU the much-needed electricity. Vcore is the

core voltage supplied to the CPU. Keep in

mind, higher clock speeds often require more

voltage to remain stable. The image shows the

default voltage, the current voltage, and an

option to adjust it (in this case, an additional

0.050V is being added, resulting in a current

voltage of 1.700V). Increasing Vcore is a

critical part of overclocking for stability, but it

also significantly increases heat output and can

potentially damage the CPU if set too high.

The next section is related to providing

electricity to the RAM modules through the

settings DIMM Default Voltage [2.70 V],

Add Voltage [+0.20 V] and New Voltage

[2.90 V]. DIMM voltage is the voltage

supplied to the RAM modules. Similar to the

CPU, increasing the RAM voltage can

improve stability when running the memory at

higher frequencies or tighter timings than their

standard specifications. The image shows the

default voltage, an added voltage of 0.20V,

resulting in a new voltage of 2.90V. Increasing

DIMM voltage can also increase heat and

potentially damage the RAM if set too high.

The Electrical Theory of CPU Clocking

To truly understand the effects of overclocking

and underclocking, it's essential to delve into

the underlying electrical principles that govern

CPU operation.

Modern CPUs are built using Complementary

Metal-Oxide-Semiconductor (CMOS) logic

gates. These gates are the fundamental

building blocks of digital circuits, and they

control the flow of electrical current to perform

logical operations. CMOS gates use pairs of

transistors, specifically NMOS (N-type Metal-

Oxide-Semiconductor) and PMOS (P-type

Metal-Oxide-Semiconductor) transistors, to

switch between ON and OFF states,

representing binary 1s and 0s. The speed at

which these gates can switch between states

directly impacts the CPU's clock speed and its

ability to process information. Several factors

govern this switching speed:

Every transistor gate possesses a small amount

of capacitance, which is the ability to store

electrical charge. This capacitance must be

charged or discharged for the transistor to

switch states. The higher the capacitance, the

more time it takes to charge or discharge, and

the slower the switching speed.

The voltage applied to the transistor gate

influences the speed at which the gate

capacitance can be charged or discharged. A

higher voltage allows for faster charging and

discharging, leading to quicker switching. This

is why increasing the CPU core voltage (Vcore)

can enable higher clock speeds in overclocking.

The amount of electrical current available to

charge or discharge the gate capacitance also

affects switching speed. A larger current allows

for faster charging and discharging,

contributing to quicker switching. The

switching time (τ) of a CMOS gate is

approximately proportional to the product of

the resistance (R) and capacitance (C) in the

circuit (τ ≈ RC). This equation highlights that

to achieve faster switching and thus higher

clock speeds, either the capacitance must be

reduced (which is generally fixed in the

physical design of the silicon chip) or the

voltage (Vcore) must be increased to supply

more current.

The power consumed by a CPU is a critical

factor in its operation and is directly related to

both its clock frequency and operating voltage.

The power consumption (P) of a CPU can be

approximated by the following equation:

𝑃 = 𝐶 × 𝑉² × 𝑓

where:

• P is the power consumed, measured in watts.

• C is the total switched capacitance of the

CPU's transistors.

• V is the supply voltage (Vcore).

• f is the clock frequency.

This equation reveals two crucial relationships:

As the clock frequency (f) increases, the power

consumption (P) also increases proportionally.

This means that doubling the clock speed

roughly doubles the power consumption. The

power consumption (P) increases much more

rapidly with increases in the supply voltage

(V). Doubling the voltage quadruples the

power consumption. This quadratic

relationship explains why increasing the Vcore

to stabilize higher clock frequencies in

overclocking leads to a substantial increase in

heat generation.

Electrical power that is not converted into

useful work by the CPU is dissipated as heat.

CPUs have specific operating temperature

ranges, and exceeding these limits can have

detrimental consequences. Typically, CPUs are

designed to operate safely below temperatures

of around 90-100°C. Excessive heat can lead

to:

To protect itself from damage, the CPU may

automatically reduce its clock speed and

voltage when it detects that its temperature is

exceeding safe limits. This process, known as

thermal throttling, results in a decrease in

performance.

Overheating can cause the CPU to become

unstable, leading to system crashes, data

corruption, and unpredictable behavior.

Prolonged exposure to high temperatures can

cause permanent damage to the CPU's silicon

components, reducing its lifespan or rendering

it unusable. To mitigate the risks associated

with heat generation, effective cooling

solutions are essential, especially in

overclocked systems. These solutions include:

• Fans: Fans are used to circulate air and

dissipate heat away from the CPU heatsink.

• Heat Pipes: Heat pipes are highly efficient

thermal conductors that transfer heat away

from the CPU to a heatsink where it can be

dissipated by airflow.

• Liquid Cooling: Liquid cooling systems

use a liquid coolant to absorb heat from the

CPU and transfer it to a radiator, where it is

dissipated by fans. Liquid cooling provides

superior cooling performance compared to

air cooling but is more complex and

expensive.

Risks and Benefits

Both overclocking and underclocking offer

potential benefits but also carry certain risks

that users should carefully consider:

Overclocking Risks

• Instability: One of the most common risks

of overclocking is system instability. This

can manifest as frequent crashes, blue

screens of death, data corruption, and

unpredictable system behavior.

Overclocking pushes the CPU beyond its

designed operating parameters, which can

lead to errors and instability if not done

correctly.

• Thermal Stress: Overclocking increases

heat generation, which can put significant

thermal stress on the CPU and other system

components. Excessive heat can accelerate

the degradation of components over time,

potentially shortening their lifespan.

• Higher Power Draw: Overclocking

requires the CPU to draw more power,

which can strain the motherboard's power

delivery system and the power supply unit.

This increased power draw can potentially

damage these components if they are not

designed to handle it.

• Voided Warranty: Overclocking typically

voids the manufacturer's warranty on the

CPU and potentially other components. If

damage occurs due to overclocking, the

user will be responsible for the cost of

repairs or replacements.

Underclocking Risks

• Reduced Performance: The most obvious

risk of underclocking is a reduction in

overall system performance. While

underclocking can improve energy

efficiency and reduce heat, it comes at the

cost of lower processing speeds, which can

make the system feel slower and less

responsive, especially in demanding

applications.

• Incompatibilities: In some cases,

underclocking can lead to incompatibilities

with certain hardware or software that are

designed to operate at the CPU's default

speeds. Some applications may rely on

specific timing or performance

characteristics of the CPU, and

underclocking can disrupt these

expectations, leading to errors or

malfunctions.

Closing words

As we've seen, the path to overclocking or underclocking is paved with careful adjustments, informed

choices, and a solid understanding of both hardware capabilities and limitations. From early jumper

tweaks to advanced BIOS configurations, the principles remain the same: balance performance,

stability, and thermal constraints to suit your needs. Whether you're reviving retro systems or

optimizing modern setups, the tools and knowledge are now more accessible than ever. With

thoughtful tuning and a respect for the risks involved, you're well-equipped to shape your system's

behavior - one clock cycle at a time.

The IBM Aptiva
The Last Dance of IBM in the Home PC Disco

ack in the shimmering twilight of the 1990s, when AOL ruled the Internet and your

computer made noises like a squirrel in pain to just to get online, IBM decided it

was going to take one more heroic swing at the consumer desktop market. Its

weapon of choice? The Series of IBM Aptiva machines, gallant, well-groomed knights in

(mostly) beige armor riding an Intel-

powered steed … except those that

used AMD.

Our machine comes from an

abandoned barn, left there by the

previous owners and is a typical

representative of that specific era. It

is an IBM Aptiva 2139-E5Y (a

surprising serial number, I must

admit, since it is not in the official

serial numbers of the machine,

maybe it was a strange Nordic

concoction), but before we unpack

the Aptiva 2139’s quirks and charms,

let’s rewind a bit.

A Little Aptiva

History

IBM, the godfather of the personal

computer, had always been that

stern uncle at the family BBQ -

powerful, respected, but not exactly

fun. The original IBM PC, released in

1981, was a beige brick of serious

business, and it dominated

corporate America. But by the early

'90s, that party had moved on. Kids

were playing games. Families were

emailing each other. And Bill Gates

was dropping Windows like it was

hot.

B

His Majesty, the IBM Aptiva 2139

IBM had already dipped its toes in the home market with the PS/1 (which seemingly nobody

remembers, maybe on purpose), but in 1994, they brought out the Aptiva line. This was

IBM's attempt to say, “Hey, we can be fun too!” And for a while, it kinda worked. Aptiva

machines came loaded with multimedia software, CD-ROM drives (which were magical back

then), and even kid-friendly programs. Some early models shipped with IBM’s own OS/2

Warp, a noble but doomed operating system that most people replaced with Windows

faster than you could say “start menu”.

Fast forward to the year 1999. The Y2K bug was looming, the internet was slow, like a

rheumatic snail, and everyone had a friend who swore their computer got hacked because

they clicked a dancing baby GIF. IBM, now in its late-stage consumer PC era, released the

Aptiva 2139 series.

The 2139 wasn’t exactly a Ferrari, but it was a reliable four-door sedan with a good stereo

and a cupholder. It ran either on an AMD K6-2 processor at 450 MHz, or as the one we

present here and now an Intel Pentium II. Both of these were paired with and ATI Rage Pro,

which surprisingly was fast enough to run Quake II, play a CD, and print a book report

simultaneously - if you were lucky. It usually came with 64 megabytes of RAM, which, at the

time, felt like unlimited power, however we managed to upgrade ours to 512 because that is

the choking point of Windows 98, just out of the box. Kids today might scoff at that, but

remember: back then, after being seasoned on DOS we were amazed that a computer could

even show a photo and play a sound at the same time.

The Ati3D Rage Pro On-Board

This machine typically had a 10 GB

hard drive - enough to store every

MP3 you could download on

Napster before your parents picked

up the phone and killed the dial-up

connection, ours is upgraded to

20GB. Since I was not

extraordinarily impressed by the

way graphics were handled by the

ATI Rage Pro, I have stuffed in mine

a Voodoo3, the PCI edition, since

our machine is the “Entry” level

version, whose motherboard is

provided by Acer, hence no AGP slot on it. Sadly. Considering that a decent period correct

PCI Riva TNT costs and arm and a leg, the Voodoo 3 with its 16 MB was the best possible

choice for the PCI port and this machine.

The 2139 had everything a late-’90s family could want: a CD-ROM drive, a 3.5-inch floppy

disk (because some people still trusted those), you could stuff in even a 56k modem that

connected you to the Information Superhighway at roughly the speed of molasses. USB

ports were there too - well, a couple of them - and they worked… eventually after installing

the proper driver.

The IBM Aptiva 2139 has a front plate so unmistakable, it practically screams, “I’m from the

'90s, and I mean business”. Its design is a glorious symphony of curves and plastic - bold,

beige, and utterly unforgettable.

Unfortunately, nestled among its

majestic facade were two gaping

5.25" drive bays, the machine was

delivered to me with. Now, you’d

think filling these would be easy.

Nope. IBM, in its infinite wisdom,

used drive bay covers so

proprietary, they might as well

have been forged in the fires of

Mount Doom. To this day, I’ve only

ever seen two in the wild, and one

of them was in a blurry eBay listing

that turned out to be a microwave.

The other elusive bay cover? I did

spot it tucked snugly into another

Aptiva, proudly displayed on a

Removing the cover can be tricky, even if we follow the manual’s steps

Top View of the Motherboard – Or better said, Top View of the ribbon cable chaos

vintage computing forum like it was the crown jewel of the Smithsonian. I messaged the

owner, hopeful, desperate, offering trades, bribes, perhaps even half of my soul. His reply

was swift and cold:

"Over my dead body. Or a 3DFx Voodoo 5 card…"

So, what did I do? I improvised. I sacrificed aesthetics for pragmatism and stuffed in two

extra CD drives, purely to plug the void. Do they work? Absolutely not. Do they light up?

Never. They are not even plugged in. But from the front, at least, it looks like my Aptiva

means serious multi-media business. It’s all for the illusion — because nothing says “I have

my life together” like a computer with three CD-ROM drives and zero shame.

The 400Mhz Pentium II in all its glory, sprinkled with a little dust

Software and Style

What really made the Aptiva line unique wasn’t just the hardware. It was IBM’s approach at

software and accessories. IBM cemented its Model M keyboard as one of the most sought-

after ones, at least in recent years and while these machines came with IBM’s “Rapid

Access” keyboard, complete with shortcut buttons labeled “Internet,” “Help,” and “Email” –

the offering was nothing of a short.

IBM included bundled programs like Lotus SmartSuite (IBM's own Microsoft Office-

alternative that offered a timely alternative to Microsoft’s) and games that were probably

educational, though most people just installed SimCity 2000 and called it a day. Seemingly

the machine was very popular in Norway, since the only rescue and restore CDs the almighty

archive holds at the moment of writing are the ones that are in the Norwegian language.

So What Happened

Despite IBM's efforts, the Aptiva line

couldn't keep up with the wild price cuts

and flashy marketing of competitors like

Compaq, Gateway, and HP. Dell, in

particular, was revolutionizing the direct-

to-consumer model, letting buyers

customize PCs online and have them

shipped straight to their doors. IBM was

still selling through traditional retail,

often at higher prices, and frankly,

regardless the high quality (because what

else would you call that the machine

from 1998 still works in 2025), most

people went for the cheap and fancy

boxes they “upgraded” from in a few

months regardless.

By 2000, IBM gracefully bowed out of the

home PC business in the U.S. The Aptiva

brand was quietly retired, and IBM

turned its attention back to enterprise

hardware and ThinkPads - leaving behind

a dusty beige legacy in dens and attics

across the worlds.

Beige Brave and Beloved

Today, the Aptivas live on in retro computing forums, or their dedicated page, found at

https://aptivasupport.com/, some crawl into eBay listings at shocking prices, and the fond

memories of anyone who fell in love with these machines long time ago. The were never the

fastest, nor the flashiest, but they worked and some still do. And in a world of buggy drivers,

sketchy modems, and endless Windows 98 restarts, that was something.

IBM’s Aptiva line represents a brief, valiant attempt to put a friendly face on a company

known for big iron. The last Aptiva (6832) was the last real hurrah before IBM turned off the

lava lamp and went back to the data center.

So here is our rig, the IBM Aptiva 2139 - a computer with a heart of silicon, a chassis of

sturdy beige plastic, and a soul full of dial-up dreams.

Behind the CPU

https://aptivasupport.com/

Introduction
In the C programming language, managing and organizing data efficiently is crucial for building robust and scalable applications.
While basic data types such as int, float, and char are suitable for simple values, real-world problems often require

grouping multiple values of different types into a single entity. This is where structures come into play.

Structures (struct) provide a powerful and flexible way to create user-defined data types that can encapsulate multiple

attributes, making your code more readable and logically organized. Whether you're building a simple contact list or working
with complex records in memory, understanding structures is a fundamental skill for any C programmer.

Thie current iteration of the C tutorial introduces the concept of structures in C, explaining their declaration, initialization, and
usage. It also covers advanced topics such as dynamic memory allocation, pointers to structures, and arrays of structures,
complete with practical examples and annotated code snippets to help reinforce the concepts.

From the technical side, feel free to use the VSCode setup we created last time, or if you wish to use a different compiler that is
also perfectly fine. So, let’s start coding.

Structures in C

Structures are user-defined data types that allow you to group together variables of different data types under a single name.
This is useful when you want to represent something more complex than a single number or character — for example, a person,
a product, or a point in space.

Declaring Structures

To declare a structure, use the struct keyword followed by
a name and a block containing member declarations.

The example on the right side defines a Person structure
that contains a name (as a string), an age (as an integer),
and a height (as a floating-point number). We use char

name[50] instead of a pointer to a string because it

allows us to allocate space directly within the structure,
making it simpler to manage for beginners.

Why group these together? Because these attributes all
belong to a single logical entity — a person. Using a
structure allows you to manage and pass around this
collection of attributes as a single variable.

1. struct Person

2. {

3. char name[50];

4. int age;

5. float height;

6. };

Creating and Initializing Structure Variables

Once declared, you can create variables of the structure type:

1. struct Person p1; // Creates a variable p1 of type Person
You can also initialize a structure during declaration:

1. struct Person p1 = {"Alice", 25, 5.7};
This is called the positional initialization, and using this, we set the initial values of the structure's members in the order they
were declared in the structure declaration.

There are several other ways to initialize a struct Person variable, and each method we present has its advantages depending on
what you need.

Designated Initializers (C99 and later)

You can initialize specific fields by name, and the order doesn't matter:

1. struct Person alice = { .name = "Alice", .age = 30, .height = 1.65f };
• Advantages: Clear, flexible, and easy to read.

• You can even skip fields if needed; skipped fields are zeroed automatically.

A Partial initialization looks like:

1. struct Person bob = { .name = "Bob", .height = 1.80f };
Here, age will be initialized to 0.

Partial Initialization by Position

If you provide only some values in positional initialization, the missing fields are automatically set to zero:

1. struct Person diana = { "Diana" };
• Only the name is initialized.

• age will be 0, and height will be 0.0f.

Zero Initialization

Sometimes you want to start with a structure entirely filled with zeros (empty strings, zero integers, zero floats):

1. struct Person empty_person = { 0 };
or (in C99):

1. struct Person empty_person = { };
• Every field is initialized to zero.

• Useful when you want a clean slate.

Compound Literals (C99 and later)

Compound literals let you create and initialize a structure on the fly:

1. struct Person frank = (struct Person){ "Frank", 45, 1.75f };
or using designated fields:

1. struct Person grace = (struct Person){.name = "Grace", .age = 35, .height = 1.68f };
• Useful when you need to pass an initialized structure directly into a function or for quick one-off uses.

Accessing Structure Members

To access individual members, use the dot operator:

1. strcpy(p1.name, "Alice");

2. p1.age = 25;

3. p1.height = 5.7;
We use strcpy to assign a string because arrays in C cannot be assigned using the = operator.

Example Program

1. #include <stdio.h>

2. #include <string.h>

3.

4. struct Person {

5. char name[50];

6. int age;

7. float height;

8. };

9.

10. int main() {

11. struct Person p1 = {"Alice", 25, 5.7};

12. printf("Name: %s, Age: %d, Height: %.1f\n",

13. p1.name, p1.age, p1.height);

14. return 0;

15. }

This simple program demonstrates
how to define a structure, initialize
it, and access its members.

With the skills you've gained so far,
you're already capable of creating
programs that can make a real
impact.

But this is just the beginning!

By learning a few more key concepts
- like memory management and
other powerful techniques - you'll
unlock even greater possibilities.

Keep going; you're building a strong
foundation for something amazing!

Dynamic Memory Allocation

Before we talk about how to use dynamic memory allocation in C, let's understand what memory means
in a program. When you run a C program, your computer sets aside a certain amount of memory (RAM) for
it. This memory is divided into different sections:

• Stack: This is where local variables (declared inside functions) are stored. The size of this memory
is usually fixed and limited.

• Heap: This is a large area of memory used for dynamic allocation - memory that you can request
while the program is running.

Dynamic memory allocation is useful when you don't know ahead of time how much memory your program will need. For
example, if you're reading a list of names from a file and you don't know how many names there will be, you can't safely declare
a fixed-size array. Instead, you can request just the amount of memory you need - and adjust it as the program runs.

C provides several functions to manage memory on the heap:

• malloc() – Allocates a block of memory.

• calloc() – Allocates and clears a block of memory.

• realloc() – Resizes a previously allocated block.

• free() – Releases memory when you're done using it.

Using malloc

The malloc() function (short for memory allocation) reserves a block of memory of the size you specify. It returns a pointer

to the beginning of that memory block.

1. #include <stdlib.h>

2. int *ptr = (int*)malloc(5 * sizeof(int));
In this example, malloc allocates enough memory for five integers. sizeof(int) ensures the memory size matches your

system’s requirements. We cast the result to an int* so we can use it like a pointer to integers.

After allocation, always check if it succeeded:

1. if (ptr == NULL) {

2. printf("Memory allocation failed\n");

3. return 1;

4. }
Once you've allocated memory, you can use it just like an array:

1. for (int i = 0; i < 5; i++) {

2. ptr[i] = i * 10;

3. }

4.

5. for (int i = 0; i < 5; i++) {

6. printf("%d ", ptr[i]);

7. }
This creates an array in memory that holds values like 0, 10, 20, 30, 40.

Freeing Memory

When you're done using dynamically allocated memory, you must release it back to the system using the free() function:

1. free(ptr);
This prevents memory leaks, which happen when a program uses memory but never gives it back. Over time, especially in long-
running applications, memory leaks can cause your system to slow down or crash.

Changing the Size with realloc

In certain situations, it might happen that the memory allocated is not the right one. It’s either too much, or too less. If you need
more (or less) space later, use realloc():

1. ptr = (int*)realloc(ptr, 10 * sizeof(int));
This changes the size of the memory block to hold ten integers instead of five. realloc tries to keep existing data if possible

and move it to a new location if needed.

Again, always check that it succeeded:

1. if (ptr == NULL) {

2. printf("Memory reallocation failed\n");

3. return 1;

4. }
Dynamic memory gives your programs flexibility and power - you can create data structures that grow and shrink as needed,
based on the input or user behavior. This is essential for working with real-world data, where nothing is truly fixed. However,
understanding this topic is also one of the more complex one when it comes bout programming. So please dwell on it as long as
you feel you have a true mastery of the topic.

Pointers to Structures

So far, we've accessed structure members using the dot (.) operator, like alice.age. But in many real-world programs,

especially those involving dynamic memory or function calls, we often deal with pointers to structures instead.

A pointer is a variable that stores the memory address of another variable. When it comes to structures, pointers allow you to:

• Work with dynamically allocated structures.

• Pass large structures efficiently to functions (without making copies).

• Modify the original structure from within a function.

Understanding pointers to structures is quite important for building more flexible and memory-efficient programs in C.

Declaring and Assigning Pointers

You can create a pointer to a structure just like any other pointer:

1. struct Person p1 = {"Alice", 25, 5.7};

2. struct Person *ptr = &p1;
In this example, ptr holds the memory address of the structure variable p1. The & operator is used to get the address of p1.

Accessing Structure Members via Pointers

To access members through a structure pointer, use the arrow operator (->).

1. printf("Name: %s\n", ptr->name);

2. ptr->age = 26;
This is equivalent to:

1. (*ptr).age = 26;
But the arrow syntax is shorter and more readable. The parentheses are necessary in the second form to ensure the member is
accessed from the dereferenced structure pointer.

What exactly is dereferencing in this case? Simply said, let’s imagine this step by step - no jargon for now.

In C, a pointer is a variable that stores a memory address. It’s like saying, "Hey, the thing you care about is over there at this
location." Now, dereferencing a pointer simply means: Go to that address and get (or change) the actual value that’s stored
there. Or, using an analogy: think of a pointer like a house address written on a piece of paper. You can't live inside the piece of
paper - you have to use the address to go to the house. Similarly, you can't do much with the pointer itself if you want the real
data - you dereference the pointer to access the real thing in memory.

In short: Dereferencing a pointer means following the address to get the actual value stored there.

Dynamically Allocating Structures

Just like arrays or primitive types, structures can also be dynamically allocated using malloc or calloc. This is especially useful
when the structure needs to live beyond the scope of a function, or when the number of structures isn't known in advance.

1. struct Person *ptr = (struct Person*)malloc(sizeof(struct Person));

2. if (ptr == NULL) {

3. printf("Memory allocation failed\n");

4. return 1;

5. }
This code dynamically allocates memory for one Person structure and stores its address in the pointer ptr. The memory

comes from the heap, so it remains available until explicitly freed.

You can now use the pointer to set values:

1. strcpy(ptr->name, "Diana");

2. ptr->age = 22;

3. ptr->height = 5.5;
And remember to free the memory when you're done with:

1. free(ptr);
in order to release back to the care of the operating system. From this point on ptr is unusable for your application, and if you

try to use it you will possibly run into one of those famous “Run After Use” scenarios which highly possibly will result with a
crash of your application, which unless your program is SimCity and runs under Windows95 is never a good situation for your
program to be in.

Why Use Dynamically Allocated Structures?

Using malloc with structures gives you more control. For example, you can:

• Create structures at runtime based on user input.

• Store structures in dynamically allocated arrays or linked lists.

• Return structures from functions without worrying about scope.

Example Program: Dynamic Structure Allocation

1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <string.h>

4.

5. struct Person {

6. char name[50];

7. int age;

8. float height;

9. };

10.

11. int main() {

12. struct Person *ptr = (struct Person*)malloc(sizeof(struct Person));

13.

14. if (ptr == NULL) {

15. printf("Memory allocation failed");

16. return 1;

17. }

18.

19. strcpy(ptr->name, "Diana");

20. ptr->age = 22;

21. ptr->height = 5.5;

22.

23. printf("Name: %s\n", ptr->name);

24. printf("Age: %d\n", ptr->age);

25. printf("Height: %.1f\n", ptr->height);

26.

27. free(ptr); // Always free dynamically allocated memory

28. return 0;

29. }
This program demonstrates how to allocate, initialize, and use a structure in dynamic memory. It's a common pattern you'll use
when working with larger programs that manage data at runtime.

Pointers to structures give you the tools you need to write memory-efficient, modular C code. Once you're comfortable with
them, they open the door to advanced features like linked lists, trees, dynamic arrays, and even basic object-oriented
techniques in C.

Arrays of Structures

Sometimes you need to store a group of similar structures — like a list of people, a set of books, or multiple sensor readings.
Arrays of structures make this easy. You can think of them as a list where each item is a full structure.

Declaration and Initialization

Here’s how to declare an array of structures and initialize it:

1. struct Person people[3] = {

2. {"Alice", 25, 5.7},

3. {"Bob", 30, 6.0},

4. {"Charlie", 28, 5.9}

5. }

Each element in the array is a separate Person structure. This is helpful when you know in advance how many items you'll need.
You can access and modify each element just like you would in a regular array.

Accessing and Modifying Elements

You use the array index followed by the dot operator to access individual members:

1. printf("First person's name: %s\n", people[0].name);

2. people[1].age = 31;
This is similar to working with basic arrays, but each element holds multiple related values.

Iterating Over the Array

A loop can be used to display or process all the elements:

1. for (int i = 0; i < 3; i++) {

2. printf("%s is %d years old and %.1f feet tall",

3. people[i].name, people[i].age, people[i].height);

4. }
This pattern is extremely useful when processing groups of items.

Using Pointers to Access Array Elements

You can also use a pointer to the first element of the array. In C, the name of the array is a pointer to its first element, so:

1. struct Person *ptr = people;
Now ptr points to the same memory as people[0]. You can use pointer arithmetic and the arrow operator to move

through and access elements:

1. printf("Second person's age: %d\n", (ptr + 1)->age);
This is particularly useful in functions or when working with dynamically allocated arrays.

Dynamically Allocated Arrays of Structures

What if you don’t know how many items you'll need until the program is running? You can allocate memory for an array of
structures dynamically using malloc:

1. int count = 5;

2. struct Person *people = (struct Person*)malloc(count * sizeof(struct Person));

3. if (people == NULL) {

4. printf("Memory allocation failed\n");

5. return 1;

6. }
You now have space for count number of Person structures. You can fill and access them just like a regular array:

7. strcpy(people[0].name, "Eve");

8. people[0].age = 24;

9. people[0].height = 5.6;
When done, don't forget to free the memory:

10. free(people);

Why You Can Use C Arrays Like Pointers (and Vice Versa)

You might have observed, that C has a decent flexibility when it comes about handling arrays and pointers. Indeed, this is the
case: In C, arrays and pointers are closely related — but they are not the same thing. They behave similarly in many cases
because of how C treats arrays when you use them in expressions.

Here’s the core rule:

In most expressions, the name of an array automatically "decays" (turns) into a pointer to its first element.

While this might sound daunting in the first, after a quick explanation it will be much more easier, so let’s break it down for all to
understand.

 When you create an array (for example, of three integers):

• The array is a block of memory containing all the elements.

• But when you use the array’s name in most expressions, C treats it as a pointer to the first element.

So:

Expression Meaning

Array_name Address of the first element

*Array_name Value of the first element

Array_name + 1 Address of the second element

*(Array_name + 1) Value of the second element

Why Pointers and Arrays Behave Similarly

C was designed to be very close to the machine — and to keep things fast and simple:

• An array in memory is just a block of consecutive memory cells.

• A pointer is just an address — it points to some place in memory.

So, using a pointer to move through the array is exactly how the array naturally lives in memory — element after element, one
after the other.

Thus, it makes sense to let the array name behave like a pointer to the start of the array.

But Arrays and Pointers Are Not the Same!

They behave similarly when used in expressions.

They are different in some important situations:

Aspect Arrays Pointers

Memory Space for all elements is reserved Only space for the pointer itself

Reassignment Cannot change an array to point elsewhere Pointer can be reassigned to point somewhere else

Size
sizeof(array) = total size (e.g., 3×4=12

bytes)

sizeof(pointer) = size of a pointer (typically 4 or 8

bytes)

Quick Visual

Imagine memory like this:

• The first element of the array is at one address.

• The second element immediately follows.

• The third element follows that.

When you use the array name, you're pointing to the first element, and moving through the array is like stepping from one
address to the next.

A Friendly Analogy

• Imagine an array is like a train with 3 cars:

• The array name is a pointer to the first car.

• If you move (+1), you go to the next car.

• A pointer is like having a ticket pointing to some car; you can also move it around.

• But the train itself (array) stays fixed — its cars are built in order and you can't just "move" the train somewhere else!

And putting all this in one place, using even more simpler terms. As a summary: In C, arrays and pointers feel very similar
because the name of an array automatically acts like a pointer to its first element. This means you can use pointer arithmetic to
move through an array, treating the array name like an address in memory. However, arrays and pointers are not exactly the
same: an array is a fixed block of memory, while a pointer is a variable that holds an address and can be changed to point
elsewhere. This design makes C arrays and pointers close to how computers really handle memory, but it's important to
remember that arrays themselves can't be reassigned like pointers can.

Exercise: Build Your Own Contact Book

Here’s a quick and fun mini-project to reinforce what you’ve learned. You’ll build a
simple contact book that stores and displays a list of people using structures,

arrays, and pointers.

Your Challenge:

1. Define a structure called Contact with the
following members:

o char name[50]

o char phone[20]

o int age

2. Ask the user how many contacts they want to add.

3. Dynamically allocate an array of Contact
structures using malloc().

4. Prompt the user to enter information for each
contact.

5. Display all contacts using a loop.

6. Free the memory when you're done.

Bonus Ideas:

• Allow the user to search for a contact by name.

• Add an option to update or delete a contact.

• Save the contacts to a file for later use.

This project is a great way to practice combining
multiple C concepts: structures, pointers, dynamic
memory, and loops — all while making something
practical!

Conclusion

Structures are an essential feature of C that allow
developers to group variables of different types under a

single name, enabling better data modeling and code
organization. In this part of the tutorial, you’ve learned how to declare and use structures, manipulate them with pointers,
allocate memory dynamically, and manage collections using arrays of structures.

These techniques are crucial for writing organized, reusable, and efficient C code. By understanding when and why to use
structures, you begin to think in terms of higher-level program design — a key step in becoming a proficient programmer.

Coming Up in The Next Episodes

In the next installment of this C tutorial series, we’ll dive deeper into more advanced topics that build upon your current
knowledge. Here’s a preview of what’s to come:

• File I/O in C – Learn how to read from and write to files using standard C library functions. This allows your programs to
store and retrieve data between runs.

• Function Pointers and Callbacks – Discover how to pass functions as arguments and use callbacks for flexible program
design.

• Data Structures in C – Explore how to build linked lists, stacks, and queues — the foundation of many real-world
software systems.

• Preprocessor Directives and Macros – Understand how the compiler processes your code before compilation, and how
you can write powerful macros to generate code.

• Modular Programming and Header Files – Break your code into multiple source files, use header files effectively, and
manage complex projects with clean interfaces.

These topics will help you transition from writing basic programs to developing efficient, real-world applications in C, but till
then stay tuned and Happy Coding!

n our introductory episode to the wonders of text mode programming we have seen how easy

… or difficult can be to draw an ASCII table on the screen. The current iteration of the series will

present you how to draw graphics on the text mode… or the closest approximation to what

graphics can be in text mode.

Introduction to VGA Text Mode Fonts
The VGA card (Video Graphics Array), introduced

by IBM in 1987, became the dominant standard

for PC video hardware, setting a compatibility

foundation that would last well into the future.

Though later technologies like SVGA and beyond

would build on it, basic VGA compatibility

remained important for operating systems, BIOS

programs, and even early graphical environments.

One of the most basic capabilities of the VGA was

its text mode. In text mode, the screen is treated

not as an array of pixels, but as a grid of character

cells. Each cell corresponds to a character code

combined with a color attribute, usually requiring

two bytes of memory per cell. In the standard

80×25 text mode, there are 2000 character-cells,

consuming about 4 KB of video memory. This

screen memory is typically mapped starting at

physical address 0xB8000 for color displays and

0xB0000 for monochrome ones.

Internally, the VGA does not render characters

directly from their codes. Instead, it looks up each

character code in a font table, a collection of

small bitmap images called glyphs. Each glyph

describes how the corresponding character

should be drawn on the screen. These glyphs are

typically 8 pixels wide and have a height of 8, 14,

or 16 pixels depending on the text mode in use.

The combination of character codes, attribute

bytes, and glyph data allows the VGA hardware to

efficiently generate a visual display from a

relatively small amount of memory.

The font data itself is stored separately from the

text buffer. On VGA hardware, fonts are usually

located in video memory near the segment

0xA0000, although how accessible or modifiable

this memory is, depends on the current mode

and the way the VGA's internal registers are

programmed. Each glyph for an 8×16 font, for

example, requires 16 bytes of data (one byte for

each scanline), meaning the full set of 256

characters occupies about 4 KB — a manageable

size for the hardware of the era.

One of the remarkable features of VGA is that it

allows programs to redefine these fonts

dynamically. A program can upload its own font,

effectively changing the entire appearance of the

text screen. To assist with this, the system BIOS

provides a convenient set of services accessible

through interrupt 0x10h (INT 10h), the standard

video services interrupt. Among its many

functions, INT 10h offers several subfunctions

specifically for loading user-defined fonts.

The most common way to load a custom 8×16

font is to set the AX register to 0x1100h and call

INT 10h. When doing so, the program must also

set up the ES:BP registers to point to the font

data in memory, use CX to specify the number of

characters to load (typically 256), and clear DX to

zero to start from character code 0. The BL

register specifies the font block size, where zero

indicates an 8×16 font. After this interrupt call,

the VGA card uses the newly uploaded font data

for all character rendering on the screen.

In addition to this, there are other closely related

subfunctions: setting AX to 0x1101h loads an

8×14 font, while AX = 0x1102h loads an 8×8 font.

Each of these variants exists to match the

different possible text mode scanline

configurations that the VGA can operate under.

For example, an 80×50 text mode would use

smaller characters (typically 8×8) to fit more rows

on the screen.

I

More advanced programs sometimes avoid the

BIOS altogether and manipulate VGA font

memory directly. This approach offers faster

performance and greater flexibility, at the cost of

requiring deeper knowledge of the VGA’s internal

registers. In particular, manipulating the VGA

Sequencer and Graphics Controller registers

allows the programmer to map font memory into

the CPU's addressable memory space

temporarily. Once mapped, the font glyphs can be

written directly into memory, greatly speeding up

the upload of large custom font sets. However,

this method requires careful handling to avoid

disrupting the VGA's operation, and is less

portable than using the

BIOS.

Historically, it is

important to recognize

that VGA evolved from

the earlier EGA

(Enhanced Graphics

Adapter). While EGA

also allowed user-

defined fonts, it typically

operated with 8×14

character glyphs by default rather than VGA’s

more common 8×16 glyphs. Although many of

the INT 10h functions exist on EGA hardware,

their behavior can be subtly different, and early

EGA BIOSes sometimes lacked full support for all

font-related services.

In practice, loading a new font involves either

calling INT 10h with the appropriate parameters

or directly manipulating memory if more control

is needed. Programs that want to maximize

compatibility often detect whether they are

running on VGA or EGA hardware and select the

correct font size and BIOS function accordingly. A

simple check using INT 10h function AX =

0x1A00h allows a program to verify whether it is

on a true VGA device; if not, it can assume EGA

compatibility and adjust its behavior.

Overall, the VGA’s handling of text mode fonts

reflects its broader design philosophy: offering

powerful low-level capabilities while maintaining

backward compatibility with older standards.

Even today, understanding how the VGA manages

text mode fonts provides valuable insights into

early PC graphics programming and hardware

design.

Before we get our hands dirty … i.e. use some

arcane C code to put a graphics in text mode on

the screen, we need the graphics itself, so for the

moment let’s use the amazing Logo found here

on the center of the page.

In order to have this graphics placed on the text

screen, we will need to perform the basic

operation of breaking up

the graphics into 8x16

glyphs, because that is what

the VGA card can work

with.

Since right now it is 2025,

we can use a retro

programming language that

was released 20th. of

February, 1991. Yes, we are

talking about Python, which

is a programming language older than some

programmers around. Here is a quick and dirty

Python code that will perform this breaking up for

us.

The following listing contains the source code of

the python application you need to break up an

image into smaller tiles. To run it install python on

your favorite operating system.

from PIL import Image

import numpy as np

Load and convert to grayscale

img = Image.open("image.png").convert("L")

img_data = np.array(img)

Using standard VGA font size

tile_w, tile_h = 8, 16

tiles_x = img.width // tile_w

tiles_y = img.height // tile_h

unique_tiles = []

tile_indices = {} # mapping: tile as tuple -> index

tilemap = []

A function to return the given tile from the image

def extract_tile(x, y):

 tile = img_data[y*tile_h:(y+1)*tile_h, x*tile_w:(x+1)*tile_w]

 return tuple(tuple(1 if pixel < 128 else 0 for pixel in row) for row in tile)

Here the program starts

for y in range(tiles_y):

 row = []

 for x in range(tiles_x):

 tile = extract_tile(x, y)

 if tile not in tile_indices:

 tile_indices[tile] = len(unique_tiles)

 unique_tiles.append(tile)

 row.append(tile_indices[tile])

 tilemap.append(row)

Tiles

for i, tile in enumerate(unique_tiles):

 print(f'const uint8_t tile{i}[{tile_h}][{tile_w }] = {{')

 for row in tile:

 row_str = ', '.join(str(pixel) for pixel in row)

 print(f' {{ {row_str} }},')

 print('};\n')

tile_set[]

print('const uint8_t* tile_set[] = {')

for i in range(len(unique_tiles)):

 print(f' (const uint8_t*)tile{i},')

print('};\n')

tilemap[][]

print(f'const uint8_t tilemap[{tiles_y}][{tiles_x}] = {{')

for row in tilemap:

 row_str = ', '.join(f'{idx}' for idx in row)

 print(f' {{ {row_str} }},')

print('};')

generic definitions

print(f'#define TILE_W {tile_w}\n')

print(f'#define TILE_H {tile_h}\n')

print(f'#define IMAGE_TILES_X {tiles_x}\n')

print(f'#define IMAGE_TILES_Y {tiles_y}\n')

print(f'#define TILES_COUNT {len(unique_tiles)}\n')

And since we can’t expect everyone to be a

master of reptiles, a quick overview of what we

have here and how it is to be interpreted.

from PIL import Image

import numpy as np

The Python program begins by importing two

important libraries: PIL (the Python Imaging

Library), which allows us to load and manipulate

images easily, and numpy, which is great for

working with numbers in a matrix format. We'll

need both, because we want to open a picture,

cut it into pieces, and treat each piece as

numbers.

img =

Image.open("image.png").convert("L")

img_data = np.array(img)

The first real step is loading the image. We open

"image.png" and immediately convert it to

grayscale using .convert("L"). This simplifies

the problem because now every pixel is just a

single number between 0 (black) and 255 (white),

no colors involved. We then turn the image into a

numpy array, so we can easily slice it up and

process the pixels.

tile_w, tile_h = 8, 16

tiles_x = img.width // tile_w

tiles_y = img.height // tile_h

Next, we define the size of a single tile: 8 pixels

wide and 16 pixels high, which matches the

classic VGA text mode font size on DOS

computers. Using integer division, we calculate

how many tiles fit horizontally (tiles_x) and

vertically (tiles_y) inside the image.

unique_tiles = []

tile_indices = {} # mapping: tile as

tuple -> index

tilemap = []

After setting up the basic image properties, the

program prepares three data structures. It

initializes an empty list called unique_tiles that

will store only the different tiles we find. There's

also tile_indices, a dictionary we use to

quickly check if we have already seen a tile, and

tilemap, which will eventually describe how to

rebuild the image using the tiles extracted from

the image.

A function to return the given tile

from the image

def extract_tile(x, y):

 tile =

img_data[y*tile_h:(y+1)*tile_h,

x*tile_w:(x+1)*tile_w]

 return tuple(tuple(1 if pixel < 128

else 0 for pixel in row) for row in

tile)

Before we start scanning the image, we define a

helper function called extract_tile(x, y).

Given the coordinates of a tile, it extracts a small

rectangle from the big image. Each pixel is then

turned into either a 1 or a 0 — we treat any pixel

darker than 128 as "black" (1), and everything

else as "white" (0). The function returns the tile

as a tuple of tuples, which is important because

we need the tile to be a hashable object to use it

as a key in a dictionary when identifying the

unique tiles we need to write.

for y in range(tiles_y):

 row = []

 for x in range(tiles_x):

 tile = extract_tile(x, y)

 if tile not in tile_indices:

 tile_indices[tile] =

len(unique_tiles)

 unique_tiles.append(tile)

 row.append(tile_indices[tile])

 tilemap.append(row)

Now the real work begins. The program goes

through the image tile-by-tile, line-by-line. For

each tile, it extracts its pixel data and checks if it

has already been seen. If it's new, it is added to

the unique_tiles list, and its index is recorded

in tile_indices. Regardless of whether it's new

or already known, the tile's index is added to the

current row of the tilemap, because the tile will

participate in the reconstruction of the original

image. After finishing each row, the row is added

to the tilemap grid.

Once the image is fully processed, the program

prints the C code that defines each unique tile as

a 2D array of bytes (uint8_t). Each tile gets its

own array, named something like tile0, tile1,

and so on. As you easily have guessed, these tiles

will be the ones that we use to redefine the font

of the VGA card, to display our graphics.

After printing the tiles themselves, the program

creates a C array called tile_set, which is simply

a list of pointers to all the tile arrays. This will

make it easy for a C program to access any tile by

its index later.

Next, the program prints out the tilemap, which

is a two-dimensional array where each number

tells which tile goes at a particular (x, y) position.

In other words, this is the recipe for

reconstructing the original image from the tiles.

Finally, the script prints out some useful #define

constants for the C side: the width and height of a

tile, the number of tiles horizontally and

vertically, and the total number of unique tiles.

There is just one drawback to this entire process:

if the image is too big, there will be more than

256 unique tiles, so we recommend that you will

reduce the size of the image till you will get tiles

that fit the number.

You can run the script from the terminal, for

example if you have saved it as imagetiler.py then

simply executing it and piping the output into a

file will deliver you the desired result.

Feel free to redirect the output of this script to a

file called “bits.c” because that is the one used in

the VGA font overwriter.

When the script is done executing, its output will

be something like:

const uint8_t tile1[16][8] = {

 { 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0 },

 { 1, 0, 0, 0, 0, 0, 0, 0 },

 { 1, 1, 1, 1, 1, 0, 0, 0 },

 { 1, 1, 1, 1, 1, 0, 0, 0 },

 { 1, 1, 1, 1, 1, 0, 0, 0 },

 { 1, 1, 1, 1, 1, 1, 0, 0 },

 { 1, 1, 1, 1, 1, 1, 0, 0 },

 { 1, 1, 1, 1, 1, 1, 1, 0 },

 { 1, 1, 1, 1, 1, 1, 1, 0 },

 { 0, 1, 1, 1, 1, 1, 1, 1 },

 { 0, 1, 1, 1, 1, 1, 1, 1 },

 { 0, 1, 1, 1, 1, 1, 1, 1 },

 { 0, 1, 1, 1, 1, 1, 1, 1 },

 { 0, 1, 1, 1, 1, 1, 1, 1 },

};

const uint8_t* tile_set[] = {

 (const uint8_t*)tile0,

 (const uint8_t*)tile1,

const uint8_t tilemap[15][40] = {

 { 0, 0, 0, 0, 0, 0, 0, 0, 0,

#define TILE_W 8

#define TILE_H 16

#define IMAGE_TILES_X 40

#define IMAGE_TILES_Y 15

#define TILES_COUNT 219

We have omitted the rest of the 218 tiles, to

conserve space.

And since we were talking about it, it is time that

we present the actual program that does the

overwriting of the fonts in order to display the

graphics. In text mode. The program is in the

listing below, and as expected, it will be followed

by a very thorough presentation.

#include <dos.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <malloc.h>

#include <conio.h>

typedef unsigned char uint8_t;

typedef unsigned int uint16_t;

#include "bits.c"

void write_font_char(const uint8_t * tile, int index, uint8_t * fontMem) {

 for (int y = 0; y < TILE_H; y++) {

 uint8_t byte = 0;

 for (int bit = 0; bit < TILE_W; bit++) {

 if (tile[y * TILE_W + bit]) {

 byte |= (0x80 >> bit);

 }

 }

 *((uint8_t *) fontMem + 16 * index + y) = byte;

 }

}

void enable_custom_font(unsigned int segment, unsigned int ofs) {

 _asm {

 mov ax, 0x03 // 0x03 - Text Mode

 int 0x10 // Set it

 mov ax, 0x1114 // Specify 8x16 Fonts

 xor bx, bx

 int 0x10

 mov ax, segment // Segment of font memory location

 mov es, ax // Goes int ES

 mov ax, ofs // Offset of font memory location

 mov bp, ax // ES:BP -> font table location

 mov ax, 0x1110 // Function to load user-defined character generator

 mov bh, 16 // height

 mov bl, 0 // Font block 0

 xor dx, dx // Starting index 0

 mov cx, TILES_COUNT // Number of characters to load (up to 256) TILE_COUNT 218

 int 0x10

 }

}

void draw_image() {

 uint16_t __far * screen = (uint16_t __far *) MK_FP(0xB800, 0);

 for (int y = 0; y < 25; y++) {

 for (int x = 0; x < 80; x++) {

 if (y < IMAGE_TILES_Y && x < IMAGE_TILES_X) {

 const uint8_t tile_index = tilemap[y][x];

 screen[y * 80 + x] = 0x0700 | tile_index; // white on black

 } else {

 screen[y * 80 + x] = 0x0700; // white on black

 }

 }

 }

}

int main() {

 uint8_t * farPtr = (uint8_t *) calloc(TILES_COUNT * 16, 1);

 // Upload all unique tiles into VGA font memory

 for (int i = 0; i < TILES_COUNT; i++) {

 write_font_char(tile_set[i], i, farPtr);

 }

 // Get the segment and offset of the far pointer

 unsigned int segment = FP_SEG(farPtr);

 unsigned int offset = FP_OFF(farPtr);

 enable_custom_font(segment, offset);

 draw_image();

 getch();

 _asm {

 mov ax, 0x3

 int 0x10

 }

 free(farPtr);

 return 0;

}

And, as promised the explanation. Like every well behaving C file, this also starts with a set of standard

includes.

#include <dos.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <malloc.h>

#include <conio.h>

• dos.h: Provides access to DOS-specific functions and data structures. Specifically, it often contains

macros like MK_FP, FP_SEG, and FP_OFF for working with segmented memory.

• stdio.h: Standard input/output functions (e.g., printf, scanf).

• string.h: String manipulation functions (e.g., strcpy, strlen).

• stdlib.h: General utility functions, including memory allocation (calloc, free) and conversions.

• malloc.h: Another header for memory allocation functions. In many DOS environments, it's largely

equivalent to stdlib.h.

• conio.h: Console input/output functions, providing functions like getch() (get character from the

console without echoing).

The next two lines were introduced for making possible the compilation of the program using TurboC++

since at some point during development we ran into some issues with Watcom C++ and DosBox, but more

about these later.

typedef unsigned char uint8_t;

typedef unsigned int uint16_t;

The two following types are defined for TurboC++ which does not have these out of the box. If you decide

to compile the source file with Watcom compiler, then you might not need these explicit definitions,

Watcom comes out of the box with them.

• uint8_t: Defines an unsigned 8-bit integer type (a byte).

• uint16_t: Defines an unsigned 16-bit integer type (a word).

#include "bits.c"

This line includes the contents of the file bits.c directly into the current source file during compilation, as

we have presented it in the section detailing the generation of the tiles. The bits.c file contains the

following definitions:

• TILE_W: The width of each tile in pixels (8, the standard width of a VGA text-mode character).

• TILE_H: The height of each tile in pixels (16, the height VGA for text-mode characters).

• TILES_COUNT: The total number of unique tiles used to compose the image.

• tile_set: A 2D array (or an array of pointers) that holds the pixel data for each tile.

• IMAGE_TILES_X: The width of the image in tiles.

• IMAGE_TILES_Y: The height of the image in tiles.

• tilemap: A 2D array that maps tiles to screen positions. As presented already, it is structured as

tilemap[IMAGE_TILES_Y][IMAGE_TILES_X]. Each element in tilemap is an index into the

tile_set array, indicating which tile to display at that location on the screen.

void write_font_char(const uint8_t * tile, int index, uint8_t * fontMem) {

 for (int y = 0; y < TILE_H; y++) {

 uint8_t byte = 0;

 for (int bit = 0; bit < TILE_W; bit++) {

 if (tile[y * TILE_W + bit]) {

 byte |= (0x80 >> bit);

 }

 }

 *((uint8_t *) fontMem + 16 * index + y) = byte;

 }

}

This function takes the pixel data of a single tile and writes it to the font memory. The parameters are:

• tile: A pointer to the pixel data of the tile (from the tile_set array).

• index: The index of the tile within the character set (0 to TILES_COUNT - 1).

• fontMem: A pointer to the memory location where the custom font is being built.

The operation of the function is as follows:

• Outer Loop: Iterates through each row of the tile (0 to TILE_H - 1).

• Inner Loop: Iterates through each bit (pixel) in the current row (0 to TILE_W - 1).

• if (tile[y * TILE_W + bit]): Checks if the pixel at the current position is set (1). The

expression y * TILE_W + bit calculates the linear offset of the pixel within the tile's data.

• byte |= (0x80 >> bit);: If the pixel is set, this line sets the corresponding bit in the byte

variable.

o 0x80 is the binary value 10000000.

o 0x80 >> bit shifts the 1 bit to the right by bit positions. For example, if bit is 0, the result is

10000000. If bit is 1, the result is 01000000, and so on.

o The |= operator performs a bitwise OR, setting the appropriate bit in the byte.

• *((uint8_t*)fontMem + 16 * index + y) = byte;: This line writes the calculated byte

(representing one row of the tile) to the correct location in fontMem.

o fontMem + 16 * index: Calculates the starting address in fontMem for the character with the

given index. Each character's font data occupies 16 bytes (one byte per row for a 16-pixel high

character).

o + y: Adds the offset for the current row.

o *((uint8_t*) ...) = byte;: The (uint8_t*) cast ensures that the pointer arithmetic is

done in bytes, and the * dereferences the pointer to write the byte value.

The next function is pure assembly magic, and thankfully is full with comments too.

void enable_custom_font(unsigned int segment, unsigned int ofs) {

 _asm {

 mov ax, 0x03 // 0x03 - Text Mode

 int 0x10 // Set it

 mov ax, 0x1114 // Specify 8x16 Fonts

 xor bx, bx

 int 0x10

 mov ax, segment // Segment of font memory location

 mov es, ax // Goes int ES

 mov ax, ofs // Offset of font memory location

 mov bp, ax // ES:BP -> font table location

 mov ax, 0x1110 // Function to load user-defined character generator

 mov bh, 16 // height

 mov bl, 0 // Font block 0

 xor dx, dx // Starting index 0

 mov cx, TILES_COUNT // Number of characters to load (up to 256) TILE_COUNT 218

 int 0x10

 }

This function uses the assembly instruction to interact with the VGA BIOS and load the custom font:

• segment: The segment address of the memory where the custom font data is stored.

• ofs: The offset address of the font data.

• _asm { ... }: Indicates an inline assembly block.

• mov ax, 0x03; int 0x10: Sets the video mode to 80x25 color text mode.

o mov ax, 0x03: Loads the value 0x03 into the AX register.

o int 0x10: Calls the VGA BIOS interrupt. 0x10 is the main video BIOS interrupt. AX holds the

function number. 0x03 is the function to set the video mode.

• mov ax, 0x1114; xor bx, bx; int 0x10: Redefines the characters on VGA cards to use the

standard 16-scanline-high text-mode font, and it takes the additional steps needed to activate the

font.

o mov ax, 0x1114: Loads 0x1114 into AX. As explained above, this is a specific value for inx 0x10,

it will instruct the VGA card to use the specific 8x16 font.

o xor bx, bx: Sets the BX register to 0. BL can be used to select a specific character block, we use

block 0.

o int 0x10: Calls the BIOS interrupt.

• mov ax, segment; mov es, ax: Sets the ES (Extra Segment) register to the segment address of

the font data. The VGA BIOS often expects the font data to be pointed to by ES:BP. We need this

double move operation, since older processor do not allow moving a variable into a segment

register.

• mov ax, ofs; mov bp, ax: Sets the BP (Base Pointer) register to the offset address of the font

data. Now, ES:BP points to the beginning of the custom font data. Again, please observe the double

move to initialize the register.

• mov ax, 0x1110: Loads 0x1110 into AX. This selects the BIOS function to load a user-defined

character generator.

• mov bh, 16: Sets BH to 16, indicating that the character height is 16 pixels.

• mov bl, 0: Sets BL to 0, indicating the starting character block (usually the first 256 characters).

• xor dx, dx: Sets DX to 0, indicating the starting character code to redefine (starting from character

code 0).

• mov cx, TILES_COUNT: Loads the number of characters to redefine into CX.

• int 0x10: Calls the BIOS interrupt to load the custom font.

The next function, as the name suggests draws the image, as expected.

void draw_image() {

 uint16_t __far * screen = (uint16_t __far *) MK_FP(0xB800, 0);

 for (int y = 0; y < 25; y++) {

 for (int x = 0; x < 80; x++) {

 if (y < IMAGE_TILES_Y && x < IMAGE_TILES_X) {

 const uint8_t tile_index = tilemap[y][x];

 screen[y * 80 + x] = 0x0700 | tile_index; // white on black

 } else {

 screen[y * 80 + x] = 0x0700; // white on black

 }

 }

 }

}

The function writes to the VGA text mode screen buffer to display the image in a way we have presented in

our previous episode of the series:

• uint16_t __far* screen = (uint16_t __far*)MK_FP(0xB800, 0);: Creates a far pointer to

the beginning of the VGA text mode video memory.

o 0xB800: The segment address of the color text mode buffer.

o 0: The offset within that segment.

o MK_FP: A macro (from dos.h) that combines a segment and offset into a far pointer.

o uint16_t __far*: Declares screen as a far pointer to 16-bit words. Each character cell in the

text buffer is 2 bytes: one for the character code, and one for the attribute (color, etc.).

• Outer Loop: Iterates through the rows of the text mode screen (0 to 24).

• Inner Loop: Iterates through the columns of the text mode screen (0 to 79).

• if (y < IMAGE_TILES_Y && x < IMAGE_TILES_X): Checks if the current screen position is within

the bounds of the image.

• const uint8_t tile_index = tilemap[y][x];: Retrieves the index of the tile to display from

the tilemap array.

• screen[y * 80 + x] = 0x0700 | tile_index;: Writes the character code and attribute to the

screen buffer.

o y * 80 + x: Calculates the offset of the character cell in the linear screen buffer.

o tile_index: The character code. Since we've redefined the character set, this index will display

the corresponding custom tile.

o 0x0700: The attribute byte. 0x07 represents white text on a black background. The attribute is

placed in the high byte of the 16-bit word.

o |: The bitwise OR operator combines the attribute byte and the tile index.

• else { screen[y * 80 + x] = 0x0700; }: If the screen position is outside the image bounds, it

writes a space character (character code 0) with white on black attributes. Because we've reloaded

the font, character 0 will now display our first custom tile, which for our convenience is an empty

tile.

What remains is the main function:

int main() {

 uint8_t * farPtr = (uint8_t *) calloc(TILES_COUNT * 16, 1);

 for (int i = 0; i < TILES_COUNT; i++) {

 write_font_char(tile_set[i], i, farPtr);

 }

 unsigned int segment = FP_SEG(farPtr);

 unsigned int offset = FP_OFF(farPtr);

 enable_custom_font(segment, offset);

 draw_image();

 getch();

 _asm {

 mov ax, 0x3

 int 0x10

 }

 free(farPtr);

 return 0;

}

The following is done in the main function:

• uint8_t *farPtr = (uint8_t*)calloc(TILES_COUNT * 16, 1);: Allocates memory to store

the custom font data.

o calloc: Allocates memory and initializes it to zero.

o TILES_COUNT * 16: Calculates the total number of bytes needed (number of tiles times 16

bytes per tile).

o 1: The size of each element (1 byte).

o uint8_t *farPtr: Declares a far pointer to the allocated memory. In DOS, far pointers are

needed to access memory outside the default data segment.

• Font Data Loop: The for loop calls write_font_char for each tile in tile_set to copy the tile's

pixel data into the allocated memory pointed to by farPtr.

• unsigned int segment = FP_SEG(farPtr);: Gets the segment address of the allocated memory

using the FP_SEG macro.

• unsigned int offset = FP_OFF(farPtr);: Gets the offset address of the allocated memory

using the FP_OFF macro.

• enable_custom_font(segment, offset);: Calls the function to load the custom font into the

VGA BIOS.

• draw_image();: Calls the function to write the tile indices to the screen buffer, displaying the

image.

• getch();: Waits for a key press before exiting. This keeps the image on the screen until the user is

ready to close the program.

• _asm { mov ax, 0x3; int 0x10; }: Resets the video mode to 80x25 color text mode before the

program exits. This restores the original text mode.

• return 0;: Indicates successful program execution.

When all that above is in

place, compiles, links and

runs as expected, the

following output will be

shown on the screen.

Now, certainly, you may ask

what is with those ugly

vertical black lines, and

rightfully the question comes:

why? The answer is a bit

more complicated than

obvious.

When you work with text

mode on VGA, every

character you see on the

screen is built from a small

grid of pixels. For normal VGA

fonts, this grid is usually 8 pixels wide and 16 pixels tall. Each character, like 'A', 'B', or a box-drawing

symbol, is stored as 16 bytes, where each byte represents one horizontal line of the character.

Inside each byte, the 8 bits represent 8 pixels. The highest-order bit (bit 7) is the leftmost pixel, and bit 0

is the rightmost pixel of the 8. So the actual font data only defines an 8-pixel-wide shape.

However, the physical screen in VGA text mode is actually 720 pixels wide for an 80×25 screen, not just

640 pixels like older EGA graphics modes. 720 ÷ 80 columns = 9 pixels per character.

This means that when the VGA card displays a character, it shows 9 pixels across, even though the font

only defines 8.

Now here's where the interesting trick happens:

• For most characters, the 9th pixel (the extra one) is just blank (off). This makes reading the fonts in

text mode easier with that tiny space between them.

• But for special characters — like the box-drawing symbols (c0h to dfh in the character set) — VGA

automatically copies the 8th bit of the font and uses it to fill the 9th pixel.

Why? Because if the right edge of the character was blank, you would see ugly "gaps" when drawing

borders or tables.

Imagine you're drawing a box, and if the rightmost line suddenly disappears, the box would look broken!

In other words:

• For box characters (c0h to dfh), VGA automatically extends the rightmost pixel (bit 0) to the

invisible 9th pixel.

• For normal characters, the 9th pixel stays empty.

This behavior is built into VGA hardware. You don’t normally control it unless you go into special VGA

registers to disable it - but most programs leave it on because it makes everything look correct.

And as a last interesting side note: The program does not run in DosBox. Regardless its flavor (vanilla, x,

staging …), it does not want to interact properly with our tiny little program. Either that we have some

undetected access violation in our program DosBox does not like, or that it seems that we have reached the

limits of emulation of what DosBox can offer.

Anyway, we have 86Box, or the hardcore of us have their physical retro machines, so there is no need to

worry.

Why Understanding VGA Font Loading Still Matters Today

Although the world has largely moved on from VGA hardware, the knowledge of how text mode fonts are

loaded, modified, and managed remains surprisingly relevant - and not just for historical interest.

Mastering these low-level techniques teaches lessons about computer architecture, memory mapping,

hardware control, and software efficiency that are timeless in their value.

For one, retrocomputing is a vibrant and growing field. Hobbyists restoring vintage PCs, writing demos for

old hardware, or developing new DOS-based games and utilities need to understand the real mechanisms

behind VGA behavior to create authentic experiences. Without understanding how the VGA exposes and

protects font memory, it would be impossible to correctly replicate the techniques that made early

software so responsive and visually distinctive.

Additionally, this knowledge forms a critical bridge to understanding modern graphics hardware. While

today's GPUs are vastly more complex, the basic ideas of planes, memory mapping, register programming,

and controlling hidden layers of data are still alive. Many concepts used in manipulating the VGA’s memory

layout - such as bank switching, special-purpose memory areas, and hardware-accelerated copying - echo

in modern systems, albeit at a much greater scale.

Beyond that, low-level programming skills like these build a mental model of how computers actually

function beneath all the abstraction layers. For operating system development, embedded systems, or

security research, the ability to think in terms of direct hardware access is an essential tool. Knowing how

the VGA hardware separates different memory planes, how it masks writes and controls access

permissions, mirrors modern techniques for memory protection, direct memory access (DMA), and

hardware virtualization.

There is also an artistic side to this mastery. The elegance with which developers once bent limited

hardware to their will - achieving smooth animations, clever UI tricks, and rich text-mode graphics -

represents a kind of craftsmanship that is still admired today. Many of the graphical effects that defined

early PC gaming and software were only possible because programmers understood and exploited the fine

details of font management and screen rendering.

In a way, studying low level system programming is like studying classical architecture: the technologies

may be ancient, but the ingenuity, creativity, and discipline they teach are eternally valuable.

Thus, even in an era of 4K displays and real-time 3D graphics, the lessons of VGA font handling continue to

inspire and inform those who seek to understand computers at their deepest level.

What the future brings?

Indeed, we have had an interesting

chapter today on low level VGA font

handling. But in our next episode we

will take things even further.

We will try to do some text mode

animation while still remaining in the

domain of VGA cards, text mode

programming and obviously our

beloved fonts too.

Because without fonts life has not

taste.

 The long, tragicomic saga of how I got hacked - and lost my faith in a certain paid

operating system vendor - could have ended on a brighter note, but apparently, the

universe had other plans…

During the final week of July, on a pleasantly sunny afternoon, something rather

disconcerting occurred just as I was putting the finishing touches on my latest article. I was

comfortably settled in my armchair, mulling over how to rephrase an awkwardly worded

sentence, when my phone gave a brief, insistent buzz.

Like any other journalist hopelessly tethered to their devices, I reached for it immediately. To

my astonishment, I found a notification from my Microsoft Authenticator app informing me

that the credentials for my account had been updated. Or, to put it plainly: it appeared I had

just changed the password to my Microsoft account.

… Except that I didn’t.

For the past 45 minutes, I had been sitting diligently in my reclining chair, attempting to

coax the words of an article into conforming to the proper grammatical standards of the

English language. The words resisted, though not with much success. Then, alarmed by a

sudden notification, I did precisely what anyone in my situation would have done.

I attempted to log in to my Microsoft account using my old password. As an aside, I should

mention that at that particular moment, I was working on an article about the Linux OS,

using my Linux machine, which had rarely, if ever, been used to access Microsoft-related

sites. To log in, I was prompted to enter both my ID and password again. And lo and behold,

the password didn’t work.

As I stared in disbelief at the screen, my phone vibrated once more. With trembling hands,

fearing the worst, I checked it again. There, glaring back at me, was another cold notification

from the same Microsoft Authenticator app: my Microsoft account had been closed. Deleted,

erased from existence, utterly obliterated.

All within the space of the five minutes since I’d first picked up the initial notification.

My brain immediately shifted into emergency mode—I could almost hear the tiny cogs

whirring frantically. Then it dawned on me: my recovery email for the account was the one I

used daily, so I quickly switched tabs to see if there had been any suspicious activity. It’s

worth noting that this recovery email was hosted on Google’s platform. It’s a private email

I’ve used for about 20 years, ever since Gmail was launched, back when getting an account

required an invitation from someone already on the platform.

Returning to my Google account, I found four unread emails from Microsoft. The first two

informed me of suspicious activity on my account, urging me to review and secure it.

From my perspective, my account was quite secure. A 14-character password with a mix of

upper and lower case letters, digits, and two different punctuation marks. And, crucially, this

password was used solely for this account.

I also had two-factor authentication enabled, with the authenticator app exclusively on my

phone and nowhere else.

The third email detailed how my authentication credentials had been changed by an IP

address whose endpoint was in Estonia. Now, I’ve visited Estonia several times—lovely

country, beautiful medieval architecture in Tallinn, excellent food, and very friendly people. I

don’t recall ever irritating anyone there to the extent that they’d hack my account in

“

retaliation. So, it seemed likely that this IP address belonged to a hacker located somewhere

entirely different.

The saddest of the four emails was the last one, which notified me that my Microsoft account

had been deleted, and they thanked me for my business.

Then, something truly frightening happened. After a few minutes of stunned silence, during

which I mourned the loss of my account, the four emails vanished from my inbox right before

my eyes. I couldn’t believe what I was witnessing—emails don’t just disappear without

human intervention.

I had no rule in place to automatically delete emails from Microsoft, especially those related

to the safety and security of my accounts. I headed over to the Trash folder in my Gmail

account, and sure enough, there were the four emails… and then they disappeared again. I

watched in real-time, from the front row, as my account was being hacked right before my

eyes.

I thought there was no higher state of mind than emergency mode, but it turns out there is:

survival mode. My brain instantly switched to it when it realized that my account was under

unauthorized access at that very moment. Not willing to risk losing all the history I’d

accumulated over the past two decades, my first instinctive action was to immediately change

the password of my account, which was, at that very moment, hosting uninvited guests.

This account, too, had a 15-character, unique and strong password, coupled with two-factor

authentication powered by Google Authenticator. The password had been changed recently,

just as a matter of routine. At that point, I hadn’t identified any clear way someone could

have gained access to it.

Despite these security measures, someone was freely roaming around my account, able to do

whatever they pleased while cleverly covering their tracks. It seems that erasing my

Microsoft account was their primary objective, or perhaps my timely password change

interrupted their nefarious plans.

I spent the following hours checking all my accounts for any signs of compromise, but

thankfully, there were none. It appears the only casualties were my main Gmail account and

the associated Microsoft account. Nevertheless, to remain on the safer side of the internet—if

such a thing exists—I changed the passwords to all accounts that have any meaningful

connection to my real life.

The recovery plan

With a clearer head, it was time to devise a recovery plan. Since my account had vanished,

the first thing I did was attempt to recreate it, and to my utter amazement, I succeeded—

using the same old email address. My unspoken, deepest hope was that once the account was

live again, everything I’d had stored there would miraculously return to me, or so my naive

self believed.

Oh, how wrong I was.

What greeted me was a completely empty account. Not a single trace of what I had expected

to find. It was as if the account had been freshly created. And, in truth, that’s precisely what

had happened. The worst of all was that I have also lost my access to my Xbox account, the

main reason why in the first I actually have a Microsoft account: to play Minecraft.

It was time to escalate this matter to a higher level of urgency. I decided that the best course

of action would be to contact Microsoft support and seek their assistance in recovering my

account.

But before we delve into this rather serious issue, let’s take a moment to enjoy the following

joke, courtesy of https://flunkingfamily.com/best-microsoft-joke-ever-will-enjoy/:

A pilot is flying a small, single-engine,
charter plane with a couple of really
important executives on board into Seattle
airport. There is fog so thick that visibility
is 40 feet, and his instruments are out. He
circles looking for a landmark and after an

hour, he is low on fuel and his passengers
are very nervous.

At last, through a small opening in the fog
he sees a tall building with one guy
working alone on the fifth floor. Circling,
the pilot banks and shouts through his
open window: “Hey, where am I?”.

The solitary office worker replies: “You’re
in an airplane.”

The pilot immediately executes a swift 275
degree turn and executes a perfect blind
landing on the airport’s runway five miles
away. Just as the plane stops, the engines
cough and die from lack of fuel.

The stunned passengers ask the pilot how
he did it.

“Elementary,” replies the pilot, “I asked the
guy in that building a simple question. The
answer he gave me was 100% correct but
absolutely useless; therefore, I knew that
must be at Microsoft’s support office and
from there the airport is three minutes
away on a course of 87 degrees”.

I had some reservations about resorting to this procedure, as I’d been familiar with that joke

for several years. However, given the level of my desperation, there was simply no other

option left to me.

After spending countless hours over several days in live chats with various tiers of support

engineers, I came to realize that some jokes might indeed have a seed of truth.

But before this starts sounding too heated, I must say this: every support engineer I actually

spoke with was exceptionally professional, extremely helpful, and truly empathetic. They

went to great lengths to try and resolve the problem I presented them with.

A huge thank you to all of you—you did a marvellous job within the limits and constraints of

your roles, and I am genuinely grateful for all the assistance you provided.

https://flunkingfamily.com/best-microsoft-joke-ever-will-enjoy/

But…

Despite your commendable efforts, which I

admired, and your patience, which I envied,

my issues remained unresolved. It seemed

that once the escalated cases left your

desks, they encountered an impenetrable

corporate wall of policies—a collection of

rules designed not for the customer’s

benefit but rather to maximize profit. After

going around in circles multiple times, I got

the distinct impression that my issue would

never be resolved.

I wasn’t asking for much: just that my

purchases made with the previous account

be transferred to my new one. The response

I received was as follows:

“Unfortunately, due to security protocols
and limitations, it is not possible to
transfer an existing Office subscription and
associated data to a different account. Each
subscription is tied to a specific account,

and transferring it would compromise
security and violate licensing agreements.”

And another response:

“The only option we have is to permanently
suspend this account to prevent any further
use. At this time, I have successfully
suspended this account, and this will
remain on indefinitely.”

In simpler terms, this meant that

everything I had purchased with my

previous account was lost forever. I would

either have to accept the loss or repurchase

everything, simply because I was too

insignificant for a large company to go the

extra mile.

The problem wasn’t a technical one. In

today’s cloud-based world, I’m quite certain

that all my data, along with its associated

IDs, is sitting somewhere in a backup

database. Crafting a clever SQL query to

restore everything to its former state would

likely be a 10-minute task for a

knowledgeable support agent. The issue

was more about the corporate mentality

that, in order to have a successful and

profitable company, every interaction must

maximize revenue, often at the expense of

doing what’s right, all while hiding behind

license agreements and rules that most

customers don’t understand.

This isn’t the fault of the support engineers

who tried to help me. They did everything

they could and were very sympathetic to

my situation, but their hands were tied by

the aforementioned rules, regulations,

and… well, that’s just how it is.

However, there’s something I must mention. During the so-called “resolution” of my case, a

few rather obscure and inexplicable scenarios occurred, like lightning from a clear blue sky.

The first incident truly shocked me because it defied any logical explanation. At one stage in

the process, I was asked to create a new, empty Microsoft account to serve as a contact point

for customer service. In order to communicate with Xbox support (which is another story

altogether), I also created an associated Xbox account, as this was where the major damage

was expected to be sorted out after the supposed “resolution” of my main account, which had

led to its complete obliteration.

Two weeks into the process, just a few days after creating this account, the newly created

account was closed, due to:

“The Xbox Safety team has found that recent behavior by the Xbox profile based on your
email address violated one or more terms of the Community Standards for Xbox or Microsoft
Services Agreement.

The violation was either brought to our attention by complaints from other players or
discovered in the course of moderating the Xbox service. Members of the Xbox team have
reviewed evidence of the violation and appropriate consequences. ”

For heaven’s sake, that account was never even used! I had logged into it once, when I have

created it, no games, no activity, it was as fresh as a two-week-old baby, and yet it somehow

violated some service agreement. No explanation, no comments, no clarity on what section

was breached or what actions led to this. I was left utterly baffled. Imagine if this had been an

active account, where people chat, play dozens of games, and have purchases linked to it, only

to have it suspended without any explanation.

Fortunately, there was an “appeal” button. After clicking it, I was presented with a tiny text

field, just enough space to type, “This is a new account created for the purpose of restoring the

old one”. Someone must have actually read it, because a few days later, I received a message

stating the suspension had been lifted. This was a relief, not that I had any chance to use the

account by that point, but I certainly didn’t want to go through the whole process again.

The second oddity occurred about two and a half weeks into the process (which, according to

Microsoft’s own people, should take no more than 24 to 72 hours). I received another email

from the Microsoft Support Team requesting the following information:

• Microsoft Account ID

• Gamertag

• Console ID

Apparently, they couldn’t locate these details in the original request I had opened. I would

have been happy to provide this information immediately… except the email came from a

generic address with no way to reply directly.

I was momentarily stumped, and I attempted to contact Xbox support to resolve this issue.

Navigating the site was straightforward enough, but finding someone who could actually

provide assistance was anything but. I had to jump through several hoops with an automated

bot that pretended to help, and if you’re lucky (meaning you’ve pressed all the right buttons,

much like in a game), you might eventually get the chance to ask a question to a member of

the gamer community.

After turning to the community for help, I once again encountered some truly kind and

helpful gamers, and they quickly pointed out that the only way to provide the requested

information to Microsoft Support was to reply to that generic email—they’d sort it out on their

end somehow.

So, that’s exactly what I did. And wouldn’t you know it, they did resolve the issue with my

Xbox account promptly. Just as expected, by suspending, disabling, and obliterating that too.

Thanks, Microsoft. Here’s an excerpt from the email they sent me:

“A couple of things to note regarding the account suspension:

If you use this account for Minecraft, we regret to inform you that the Minecraft portion of the
account is also unable to be recovered and the game will need to be re-purchased on a new
account. We understand that this is not the news that you wanted to hear and apologize for
any inconvenience that this may cause.

In the event that you have files stored in OneDrive, unfortunately those files are no longer
accessible after account suspension and are subsequently unable to be recovered due to
encryption; even our engineers do not have standing access to the files. We know that this is
not the ideal outcome in terms of your stored files, but please be assured that this is necessary
for the privacy of your data and to ensure that it does not end up in the wrong hands
permanently. We appreciate your understanding regarding these unfortunate circumstances.”

As a direct result of this entire debacle, I find myself utterly infuriated with Microsoft. I

simply cannot fathom how they didn’t have a backup in place to restore the account. If that’s

truly the case, it’s genuinely alarming. Because if there are backups, then it should have been

a matter of running a few SQL scripts to restore the account. Or at least, that’s how I would

have designed the system in the first place. But instead, they’ve opted to wipe everything

clean and call it a day, then head off to enjoy a good night’s sleep.

This inability—or perhaps unwillingness—to resolve the issue has left me wondering... will I

ever purchase anything cloud-based again? Given the way the software world is moving, I

doubt there will be anything offered on physical media in the near future. But if all my

subscriptions are cloud-based, then they are entirely at the mercy of the company I purchased

them from. The software can be revoked at their whim, and in the event of an unfortunate

incident like the hacking I experienced, access might simply vanish. And the worst part? It

seems they couldn’t care less if their customers lose their money, their files, or—well, pretty

much anything.

It would have been at least a gesture of goodwill to say, “Yes, we’re sorry about this, you need

a new account, but your new account will contain all the purchases you’ve made, so the only

thing you have to rebuild are your gaming achievements from the past few years with us.”

What’s truly outrageous, at least from my perspective, is how effortlessly they dismiss the loss

of "stored files." Fortunately, I didn’t leave my work at the mercy of OneDrive, and though I

considered it at one point, I’m now patting myself on the back for choosing a different cloud

host. It’s one thing to have to repurchase something, but losing access to your files—well, that

could mean a lifetime’s worth of memories, photos of your baby’s first steps, or a book you’ve

been writing for the last year, or even your financial records saved for the tax authorities. And

to hear, “Unfortunately, those files are no longer accessible,” is truly disappointing.

What could I have been doing differently?

The person that I am most furious with in the entire process is certainly myself. I could have

been a bit more careful (paranoid), and have some anti-virus software installed on the

Windows computer of the house, which was mainly used for playing games by other members

of the family. Truth is, I have trusted myself, that I gave a good education for people

important to me about downloading all kind of stuff from the Internet, especially when it

comes about game tutorials, cheats, and other kind of wonders. Seemingly I failed in that

process.

The attack highly possibly was planned around a session stealing, where a nasty Trojan,

presenting itself as a helper of gaming people, was started unknowingly to the player, and the

built-in anti-virus that comes by default installed on the machine (guess it's provider) failed to

identify it.

The virus just stayed in the memory, waiting for someone to log in on that machine, and to

my biggest misfortune it was me who actually had some documents needed in desperate

synchronization as fast as possible. From that point on it was a piece of cake from the

attacker to get the session cookies, and use them at their will at a later stage.

As a direct consequence of the unfolding of the events I have heavily invested in a decent anti-

virus, and what a surprise. Some downloaded "Game Helpers" contained a series of unwanted

guests. Too bad that I have found out too late.

The Last Words Go to the Hacker

Yes, I’ll dedicate this final paragraph to the individual who so gleefully caused all this chaos.

Dear rzfltfnh@ellamail.com, because that was the email ID you left as the recovery contact in

the hacked account after wreaking all this havoc. I assume it’s not your real name, as even a

cat walking across a keyboard could come up with a better alias, but I need something to call

you.

Grow up, mate. You might think you’ve done something clever by hacking into the account of

someone you don’t know, spreading chaos and mayhem, and feeling triumphant just because

you could.

mailto:rzfltfnh@ellamail.com

But don’t. Your

actions brought

nothing positive into

the world. Here’s

what you achieved:

• You destroyed

the Minecraft realm

of a group of friends

who had spent

hundreds of hours

crafting their ideal

village. They’d gone

the extra mile to

make it zombie- and

creeper-proof,

gathered rare

resources to build

their dream homes

with unique materials.

One of them had a

collection of rare music

discs, another had an

elytra. Now, it’s all gone,

and they’ll have to start

from scratch.

• You erased our

achievements in Sea of
Thieves, painstakingly

accumulated over the

past two and a half

years. Several rare

items, now impossible

to find, have

vanished, and all the

hard work we put in

was for nothing.

Those are just the

bigger issues. I won’t

even bother mentioning

the financial loss or the

countless hours wasted dealing with customer service—it’s water under the bridge now.

And yet, I bear you no ill will, not even wishing that a seagull with diarrhea empties its

stomach on your head on a sunny day, because I simply feel sorry for you. All the knowledge

and dedication you’ve gathered over the years, only to use it to destroy what others have built.

Why not channel that energy into something positive and actually make a difference in the

world?

Have a sunny day, my friend.

mailto:retrowtf25@gmail.com

